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ABSTRACT 

Optical technologies have experienced significant advancements, leading to various scientific 

and technological applications. However, the endeavor to probe deeper into inhomogeneous 

media is hindered by the inherent challenge of optical scattering. Notably, at depths exceeding 

1 mm beneath the skin, the multiple scattering phenomena transform potential imaging clarity 

into optical speckles. This thesis addresses the critical need for innovative methods to 

circumvent optical scattering and elucidate information concealed within optical speckles. It 

presents a comprehensive exploration of optical speckles, offering novel insights into 

overcoming, understanding, and utilizing optical speckles. The body of this thesis is 

methodically divided into five chapters, each contributing to the overarching narrative of 

advancing biomedical optics. 

In Chapter 2, a parameter-free algorithm has been proposed for iterative wavefront shaping to 

overcome speckles, aiming to focus lasers through scattering media and setting the foundation 

for subsequent chapters. This innovative approach avoids the time-consuming and experience-

dependent parameter tuning process, which is inevitable for existing iterative algorithms. 

Experimental validation, employing ground glass and multi-mode fibers, substantiates the 

algorithm’s efficacy. These results showcase its robust capability to achieve laser focusing 



across various scattering environments. 

In Chapter 3, the focusing capabilities of iterative wavefront shaping are extended to image 

retrieval from speckles. We introduce a Generative Adversarial Network (GAN) to effectively 

tackle the challenge of spatiotemporal decorrelation in optical speckles, enabling the retrieval 

of images from speckles that have decorrelated to unknown statuses, rather than neglecting 

intervals between acquiring the training and test datasets as most other research. The GAN 

framework, notable for its broad generalizability, is trained to retrieve high-fidelity human face 

images from decorrelated speckles. The ability has been demonstrated even under conditions 

where the scattering medium has significantly decorrelated, such as after the optical system has 

been inactive for extended periods (up to 37 hours in experiments) before being reactivated. 

The experiments mark a significant stride in broadening the applications of learning-based 

methodologies in speckle imaging. 

Chapter 4 further advances the theoretical understanding of speckles and delves into the 

information delocalization within optical speckles, employing learning-based models and 

information entropy for an in-depth analysis. The study also examines the speckle sampling 

condition for high-fidelity information retrieval from optical speckles, an important but 

previously unexplored research question. Experimental observations disclose a uniform 



dispersion of information among fully developed optical speckles, ensuring the integrity of 

information retrieval is maintained irrespective of the spatial positions of optical speckles. A 

theoretical framework emerges from a synthesis of physical models and empirical data, 

postulating that neural networks can be trained to retrieve information with high fidelity from 

optical speckles, provided the entropy of the speckle autocorrelation exceeds the entropy of the 

target autocorrelation. 

Chapter 5 represents a synthesis of the practical algorithmic advancements and theoretical 

insights from the previous chapters. Speckle Transformer, a cutting-edge vision transformer-

based model, has been designed to harness the delocalized information within optical speckles 

for target classification. The proposed model directly extracts speckle features for classification, 

surpassing traditional methods where classification follows information retrieval. 

Chapter 6 signifies a departure from the primary focus on speckle imaging to embracing the 

natural randomness of optical speckles and exploring the utilization of optical speckles in the 

realm of security. An innovative speckle-based optical cryptosystem has been proposed to 

achieve a straightforward yet highly effective encryption mechanism. The proposed 

cryptosystem is distinguished by its robust security, rapid encryption, and cost-efficiency. 

Within this framework, a piece of ground glass serves as the physical secret key, enabling the 



encryption of face images through the scattering medium of seemingly chaotic optical speckles 

at the speed of light. Subsequently, these images are decrypted from the optical speckles using 

a pre-trained neural network, ensuring that the retrieved face images retain high fidelity and are 

recognizable by face recognition algorithms. To the best of our knowledge, this is the first 

demonstration of a speckle-based optical cryptosystem for face recognition. 

In summary, these chapters illustrate a comprehensive journey from overcoming the challenges 

posed by scattering, understanding delocalized information in speckles, to harnessing the 

properties of optical speckles for diverse applications. Accordingly, this thesis significantly 

advances our comprehension of delocalized information within optical speckles and charts a 

new course for speckle-related research and applications. The research and experimental 

outcomes not only elucidate the underlying principles but also herald the advent of a 

transformative paradigm in deep tissue optics, which promises to extend penetration depths and 

augment resolution, thereby broadening the scope and efficacy of optical applications in 

biomedical research. 
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1  INTRODUCTION 

Part of contents in Sections 1.1-1.4 are extracted from a published peer-reviewed paper: 

Lai, P.†,#, Zhao, Q.†, Zhou, Y., Cheng, S., Woo, C. M., Li, H., Yu, Z., Huang, X., Yao, J., Pang, 

W., Li, H., Huang, H., Li, W., Zheng, Y., Wang, Z., Yuan, C., & Zhong, T.# (2024). Deep-tissue 

optics: Technological development and applications. Chinese Journal of Lasers, 51(1), 

0107003. 

 

The exploration of optical speckles stands at the forefront of this thesis. Our primary objective 

is to demystify and harness the potential of optical speckles. To this end, we employ wavefront 

shaping, a technique that strategically modifies the phase of light waves, to effectively navigate 

through optical scattering. Furthermore, we integrate deep learning-based models, which serve 

as sophisticated tools to decipher and retrieve delocalized information embedded within 

speckles. As a prelude to our detailed research findings, the following sections will present a 

comprehensive overview, including progress and innovative techniques that have shaped the 

field of speckle-related research. 
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1.1 Scattering in Optics 

Optics, a pivotal sub-discipline of physics, delves into the phenomena, properties, and 

applications of light. Over time, optics has evolved into an independent discipline, and optical 

imaging plays a crucial role in scientific research. By utilizing the phenomena and properties 

of light to record images of objects, optical imaging has extensive applications [1]. For instance, 

optical imaging offers high resolution that is free from ionizing radiation, making it safer than 

X-rays or gamma rays that pose potential risks of oncogenicity [2]. Additionally, optical 

imaging shows flexibility in configuration to provide rich target information based on the 

amplitude, phase, wavelength, polarization, and other characteristics of light [3-4]. Furthermore, 

the application of contrast agents further enhances imaging specificity and contrast, thereby 

improving the visualization of desired targets and opening new avenues for disease diagnosis 

and treatment [5]. 

These advantages have inspired the development of various high-resolution optical imaging 

technologies, such as confocal microscopy [6], multiphoton microscopy [7], photoacoustic 

microscopy [8], optical coherence tomography [9], etc. Whilst encouraging, these 

implementations have encountered fundamental challenges in living biological tissues. The 

limitation stems from the strong scattering of light due to the inherent inhomogeneous spatial 
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distribution of the refractive index of scattering media, which encompasses diverse constituents 

and functions [10-12]. The inhomogeneous refractive indices have various effects on the 

amplitudes and phases of wavefronts. As a result, the light beam spreads quickly and is 

accompanied by the accumulated scattering of light (approximately one scattering event per 0.1 

mm optical path length at visible wavelengths), generating optical speckles rather than clear 

spots or imaging outside the medium [13], as shown in Figure 1-1a. In combination, these result 

in an intrinsic trade-off between spatial resolution and penetration depth for optical techniques 

in biological tissues [14]. 

The main purpose of this thesis is to understand and manipulate optical speckles. To achieve 

this goal, wavefront shaping is employed to address optical scattering through scattering media. 

Additionally, deep learning-based methods are proposed to analyze and retrieve delocalized 

information from speckles, and the conditions under which information can be retrieved with 

high fidelity are investigated, leveraging the information entropy. From another perspective, 

considering their inherent randomness, optical speckles can be utilized as ciphertexts in optical 

cryptosystems to protect private data. Subsequent sections will elaborate on the backgrounds 

of related research. 
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Figure 1-1 (a) A plain (unmodulated) wavefront passes through a scattering medium, 

resulting in optical speckles, rather than an optical focus. (b) With wavefront shaping, the 

modulated wavefront passes through the same scattering medium, generating a clear 

optical focus. This figure is reproduced from Ref. [15-16]. 

 

1.2 Computational Approaches 

Despite extensive research efforts to overcome scattering challenges, traditional physics-based 

methods have limitations, particularly in scenarios characterized by strong scattering [12]. In 

recent years, the advent of computational optics has marked a significant shift in research 

related to optical speckles, rapidly evolving into an interdisciplinary domain that integrates 

optical theories with computational algorithms. This fusion of disciplines strives to harness the 

combined strengths of physics and computational science to realize applications beyond the 



5 

 

reach of conventional optics [17]. Predominant computational optics strategies employed in 

deep tissue optics include digital optical phase conjugation (DOPC), iterative wavefront 

shaping, and transmission/reflection matrix (TM/RM) [15]. 

Traditional optical phase conjugation (OPC) employs a phase conjugate mirror, such as a phase 

conjugate crystal, to correct the distorted wavefront by the scattering medium, achieving time 

reversal and refocusing light back to the guide star [18]. In contrast, DOPC utilizes a suite of 

digital tools comprising a digital camera, computer, spatial light modulator, and algorithms to 

supplant the phase-conjugation mirror [19]. These components synergistically ascertain and 

produce the phase-conjugated wavefront, effectively compensating for phase aberrations 

induced by optical scattering, thereby facilitating optical focus through a scattering medium 

[20]. Despite its promise, DOPC faces challenges with the stringent pixel alignment required 

between the wavefront sensor and the wavefront modulator. Coupled with intricate optical 

design and the necessity for guide stars, these factors hinder the widespread adoption of DOPC 

in other optical instruments and its application in deep tissue imaging. 

Exploring cost-effective and straightforward approaches, iterative wavefront shaping has 

emerged as a promising computational method. Pioneered by Vellekoop et al. in 2007, this 

technique introduced an iterative optimization-based approach to wavefront compensation, 
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marking a milestone in achieving optical focusing through dense scattering media and 

revolutionizing deep tissue optical focusing and imaging [16]. Iterative wavefront shaping 

adjusts the phase of the incident light wavefront using feedback signals, with the optical field 

being refined iteratively to enhance the focus brightness or feedback signals over successive 

iterations [21], as depicted in Figure 1-1b. The feedback signals can take various forms, such 

as focal intensity, peak-to-background ratio (PBR) in the captured speckles [22], and 

photoacoustic signal strengths [23]. The choice of heuristic optimization algorithm is critical, 

significantly influencing the focusing performance [24]. Given that wavefront optimization is 

inherently a non-convex problem, the selected algorithm must navigate past local optima, 

converge swiftly, and robustly withstand environmental perturbations [25]. 

Various algorithms have been proposed to address these challenges. For instance, Li et al. 

introduced a dynamic mutation algorithm (DMA) in 2021 to facilitate focusing amidst non-

stationary scattering media [26], while Woo et al. combined genetic algorithms with ant colony 

optimization (GA-ACO) in 2022 to optimize focusing efficiency [27]. Nonetheless, these 

algorithms typically necessitate optimization durations ranging from seconds to minutes. The 

primary bottleneck is the sluggish response of spatial light modulators (Table 1-1) and cameras 

used for capturing feedback signals, compounded by communication delays between hardware 
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components [28]. Consequently, achieving real-time focusing through scattering media remains 

elusive, underscoring the need for hardware capable of higher speeds. 

 

Table 1-1 Commonly used spatial light modulators in wavefront shaping. 

 Modulation Refresh rate Control units 

Liquid crystal-based spatial light 

modulator [29] 
Phase 0.1 kHz ~106 

Digital micromirror device [30] Amplitude 23 kHz ~106 

Grating light valve [31] Amplitude 350 kHz ~103 

 

While iterative wavefront shaping has proven effective for optical focusing through scattering 

media, it inherently requires a time-intensive optimization process for each focal point. 

Nevertheless, the establishment of a mathematical model for the scattering medium offers a 

solution and enables the pre-calculation of wavefront compensation patterns necessary for 

focusing on various spatial locations [32-33]. In the context of the transmission matrix (TM), a 

linear mathematical matrix model describes the relations between the incident and scattered 

output wavefronts to characterize the scattering medium. Within this framework, speckles can 

be conceptualized as the cumulative effect of diverse wavefronts [34]. 

If the incident light field is 𝐸 and the output light field is 𝑈, the transmission matrix 𝑇 can 
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be represented as [35]: 

 𝑈 = 𝑇 ∙ 𝐸 =

[
 
 
 
 
𝑡11 ⋯ 𝑡1𝑛 ⋯ 𝑡1𝑁
⋮ ⋱   ⋮
𝑡𝑚1  𝑡𝑚𝑛  𝑡𝑚𝑁
⋮   ⋱ ⋮
𝑡𝑀1 ⋯ 𝑡𝑀𝑛 ⋯ 𝑡𝑀𝑁]

 
 
 
 

∙ 𝐸. (1-1) 

The intensity 𝐼𝑜𝑢𝑡 of resultant optical speckles is the amplitude function of the scattered output 

light field: 

 𝐼𝑜𝑢𝑡 = |𝑈
2|. (1-2) 

In the process of measuring the TM, a diverse array of modulated wavefronts, such as those 

based on the Hadamard set, are projected onto the scattering medium. The corresponding 

outputs are then recorded to ascertain 𝑇 in Equation (1-1) [36-37]. 

With the TM determined, it becomes possible to derive wavefronts for optical focus, project 

patterns through scattering media, or retrieve images from speckles. Notably, Boniface et al. 

achieved non-invasive focusing through scattering media by employing a fluorescent-based TM 

approach in 2020 [38]. More recently, in 2023, Cheng et al. successfully conducted phase 

optimization using an alternating projection method derived from TM, culminating in the 

projection of specific patterns through scattering media [39]. 

While the advancements in iterative wavefront shaping and transmission matrix models are 
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commendable, their reliance on feedback signals presents a challenge. In the context of deep 

tissue imaging, the practicality of designating guide stars or obtaining feedback signals within 

tissue samples is often unfeasible [40]. This limitation constrains the broader application of TM 

models. The situation motivates the development of the reflection matrix (RM, or 𝑅 ) that 

shares a conceptual similarity with the TM, yet establishes the relations between the incident 

light field 𝐸 and the reflected light field 𝑈𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 [41]: 

 𝑈𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑅 ∙ 𝐸 =

[
 
 
 
 
𝑟11 ⋯ 𝑟1𝑛 ⋯ 𝑟1𝑁
⋮ ⋱   ⋮
𝑟𝑚1  𝑟𝑚𝑛  𝑟𝑚𝑁
⋮   ⋱ ⋮
𝑟𝑀1 ⋯ 𝑟𝑀𝑛 ⋯ 𝑟𝑀𝑁]

 
 
 
 

∙ 𝐸, (1-3) 

where the introduction of a 𝑅 addresses the challenge by utilizing a reflected wavefront instead 

of a transmitted wavefront. 

Compared with TM, the RM approach offers a strategic advantage by positioning both the 

incident and reflected light detectors on the same side of the scattering medium. This 

configuration obviates the necessity for feedback signals across the medium [42]. In a 

groundbreaking study, Kang et al. successfully measured the RM of a scattering medium, 

significantly amplifying the energy of the incident light [43]. Building on this, Cao et al. 

introduced an RM-based Optical Coherence Tomography (RM-OCT), achieving remarkable 

focusing at a depth of 9.6 times the average scattering mean free path (SMFP) [44]. Despite 
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these advances, existing RM-based methods still need multiple measurements, posing a 

challenge to keeping pace with the rapid decorrelation characteristic of scattering media. 

 

1.3 Deep Learning-based Approaches 

Efforts of the aforementioned computational optics are based on complex physical models that 

simulate wavefront propagation through scattering media, facilitating optical focusing and 

imaging of rudimentary targets like letters, numbers, and basic patterns. Yet, these methods 

encounter efficiency roadblocks when faced with unstable scattering media or intricate imaging 

targets. Under such conditions, the efficacy of computational optical techniques diminishes, 

posing significant challenges to the successful recovery of images or the precise control of 

wavefronts. 

The advent of artificial intelligence, particularly deep learning (DL), has revolutionized the 

approach to complex speckle-related problems [45]. DL has served as a formidable tool in 

deciphering the intricacies of scattering media [46]. By training Deep Neural Networks (DNNs) 

with established data pairs, which include ground-truth images alongside their corresponding 

speckles, it’s possible to extract multifaceted speckle features to retrieve valuable information, 
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as illustrated in Figure 1-2. The prowess of a pre-trained neural network lies in its ability to 

retrieve high-fidelity images, such as human faces, directly from speckles. This negates the 

necessity for optical focusing and raster scanning typically required in iterative wavefront 

shaping [28]. 

Additionally, DNNs have further promoted the application of speckle imaging through non-

stationary scattering media [47]. With their ability to discern features and structures at various 

levels, DNNs exhibit remarkable generalization capabilities. They build the input-output 

wavefront relationship and enable accurate retrieval of original images from speckles [48]. 

Further, DNNs can learn from speckles across different statuses of a disturbed scattering 

medium, enhancing their adaptability to changes within the scattering medium [49]. A notable 

development was the semi-supervised learning model introduced by Fan et al. in 2021, which 

was designed to counteract the time-varying nature of multimode fibers (MMF) [50]. More 

recently, in 2024, Li et al. developed a multiscale memory dynamic-learning network that 

updated parameters through online training and transmitted video data over a one-kilometer-

long MMF [51]. These underscore the superior robustness of DL-based methods over 

traditional approaches. 
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Figure 1-2 Training neural networks: known speckles and the corresponding ground 

truths are used to train the designed neural network, whose outputs are gradually tuned 

to approximate the ground truths. (b) Testing neural networks: unseen speckles are used 

to test the trained neural network, whose outputs are retrieved images from speckles. This 

figure is reproduced from Ref. [52]. 

 

1.4 Multimode Fibers in Imaging 

The advancements discussed thus far have introduced noninvasive techniques aimed at 

mitigating or suppressing scattering in deep tissues. Yet, the scattering properties of living 
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biological tissues, coupled with their millisecond-scale decorrelation time, pose significant 

challenges to the deployment of these technologies for high-resolution focusing and imaging 

within living tissues. Recognizing the limitations of current noninvasive methods, some 

researchers are pivoting towards minimally invasive strategies that leverage ultrathin optical 

MMFs [53]. 

It is important to note that conventional endoscopes can also bypass the interference caused by 

tissue scattering, facilitating the use of high-resolution optical technologies in deep tissue 

applications. However, the endoscopes typically incorporate traditional optical elements, such 

as image sensors and optical lenses. Their substantial sizes not only make them cumbersome 

but also lead to insertion trauma [54]. In contrast, MMFs present a host of benefits: they are 

minimally invasive, with diameters ranging from 100 to 200 μm (comparable to an adult’s hair 

strand), offering both flexibility and cost-effectiveness [55]. Yet, the inherent mode dispersion 

and coupling within MMFs result in an optical field output that resembles speckles produced 

by scattering media, complicating the direct interpretation of the transmitted spatial information 

[56]. 

To surmount this obstacle, fiber optics and computational optics have converged to innovate 

optical endoscopy. Through wavefront shaping, output wavefronts of MMFs can be precisely 
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controlled. That is, leveraging computational optics, iterative wavefront shaping can channel 

light into an MMF and facilitate optical focus within deep tissues, as illustrated in Figure 1-3 

[57]. Moreover, by determining the TM/RM of the fiber, raster scanning of the focused light 

can be performed within the field of view of the MMF to generate or retrieve high-resolution 

images [58]. 

Alternatively, neural networks can also be trained in advance to establish a correlation between 

the input wavefronts and the resultant speckles through an MMF, thereby retrieving images 

from MMF speckles [59]. That said, it must be highlighted that the delicate nature of MMFs, 

which is susceptible to deformation, calls for neural networks with enhanced generalizability. 

A strategy to improve generalizability involves incorporating diverse statuses of the MMF into 

the training dataset, ensuring that the pre-trained network can accurately retrieve images even 

post-deformation of the MMF. 
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Figure 1-3 (a) Illustration of a lensless MMF being inserted into deep tissue with minimal 

invasion. (b) Without wavefront shaping (WFS), light output from the MMF is scrambled, 

forming a diffused speckle-like pattern. (c) With wavefront shaping, the light output from 

the MMF can be high-resolution focused and raster scanned, allowing for high-resolution 

optical manipulation and imaging in deep tissue. This figure is reproduced from Ref. [60]. 

 

1.5 Speckles for Encryption 

Apart from overcoming optical scattering and retrieving information from speckles, the inherent 

randomness of speckles, characterized by bright and dark spots, can serve as candidates for 

encryption in hardware-based cryptosystems [61]. Subsequently, research related to the 

utilization of speckles for encryption will be introduced. 
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Among the hardware-based cryptosystems, optical cryptosystems have garnered considerable 

attention with the progress of optical computing and computational imaging [62-63]. The 

optical cryptosystems offer several benefits over traditional software-based cryptosystems. First, 

optical cryptosystems typically demonstrate faster speeds, higher security, and lower costs in 

comparison to commonly employed software-based cryptosystems [64]. Additionally, optical 

encryption enables much longer secret key lengths, enhancing the overall system security [61]. 

Last but not least, optical encryption achieves cost efficiency [64]. On the contrary, software-

based cryptosystems often require expensive high-performance computers to attain comparable 

security levels. 

Due to these advantages, two main types of optical cryptosystems have been developed, namely: 

double random phase encryption (DRPE) [65-66] and speckle-based optical cryptosystems [67-

68]. Regarding DRPE, two phase masks are utilized at the input plane, and plaintexts are 

encrypted on the Fourier plane [65]. Accordingly, the optical setup of DRPE is complex due to 

the interferometric design, and DRPE is challenging to integrate with other systems [69]. As 

for speckle-based optical cryptosystems, optical speckles are directly employed as ciphertexts 

to encrypt plaintexts, eliminating the need for interferometric design and attracting considerable 

research interests [68]. In optical speckle-based cryptosystems, scattering media are utilized as 



17 

 

the physical secret key, resulting in optical speckles with randomly distributed bright and dark 

spots. The optical speckles are the ciphertexts and can be captured by regular digital cameras 

for further processing. Accordingly, speckle encryption is flexible for integration with existing 

systems due to its straightforward implementation, as shown in Figure 1-4 [52]. Additionally, 

the random nature of optical speckles creates nearly infinite information channels, yielding a 

high level of security and information protection with extremely long physical secret key 

lengths and enhancing the security of the speckle-based cryptosystem [70]. 

 

 

Figure 1-4 Conceptual illustration of the speckle-based optical cryptosystem: a ground 

glass is exploited as the physical secret key to encrypt face images via random optical 
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speckles at light speed; a well-trained neural network can decrypt speckles to face images 

for recognition. This figure is reproduced from Ref. [52]. 

 

Furthermore, although speckle encryption is simple to implement with optical setups, 

decrypting speckles demands elaborate algorithms for retrieving plaintexts from speckles. From 

another perspective, decrypting speckles is equivalent to retrieving image information from 

speckles, and methods for speckle imaging can be applied for decryption, including 

transmission matrix-based methods [70] and deep learning-based approaches [67]. For 

encrypting simple-structured images, the two methods perform well in retrieving digits, 

characters, or simple patterns from optical speckles [70-71]. Consequently, the applications of 

speckle-based cryptosystems have mainly focused on encrypting simple images (e.g., 

characters, clothes, animals, etc.) with high security and fast-speed encryption [65-70]. 

However, speckle-based optical cryptosystems for complex tasks, such as encrypted face 

recognition, remain rarely explored. Here, challenges encompass handling rapidly changing 

optical speckles for decryption with high fidelity to preserve key facial features and detailed 

structures. Additionally, transmission matrix-based methods and deep learning-based 

approaches all require lots of speckle data during training processes to build the complex 
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relationships between speckles and face images. Accordingly, high fidelity image retrieval can 

help face recognition from decrypted images with high accuracy for practical applications. 

 

1.6 Motivation 

In this thesis, efforts have been devoted to overcoming, understanding, and utilizing optical 

speckles. The scope of research encompasses the algorithm for iterative wavefront shaping, the 

retrieval of information from speckles, the concept of delocalized information within speckles, 

the process of classification through scattering media, and the utilization of optical speckles in 

cryptographic systems. The motivations behind these studies are expounded as follows: 

(1) Parameter-free algorithm: Iterative wavefront shaping is a critical technique for directing 

light through or within scattering media. A notable challenge in this domain is the fine-

tuning of numerous parameters to secure robust and optimal focusing, which is inevitable 

for existing iterative algorithms. Additionally, the parameter-tuning process can be 

laborious and highly dependent on the particularities of the scattering samples and 

experimental setups. To address this, the thesis introduces a novel parameter-free algorithm 

designed to autonomously calibrate parameters utilizing real-time feedback. This 
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innovation is driven by the desire to bolster the algorithm’s adaptability to environmental 

fluctuations and a diversity of scattering conditions. 

(2) Spatiotemporally decorrelated speckles: Deep learning-based strategies hold considerable 

promise for retrieving images directly from speckles. Yet, most of the related research 

neglects the time intervals between acquiring the training and test datasets, and data from 

the training and test sets are highly correlated. Accordingly, these neural networks face 

hurdles in non-stationary scattering media, where the testing data may significantly 

decorrelate from the training data, thus constraining the practicality of deep learning 

applications. To surmount this challenge, this thesis aims to enhance the generalizability of 

neural networks. The goal is to equip deep learning models with the ability to adapt to 

unknown statuses of the scattering medium that deviate from the initial training data. 

(3) Delocalized information in speckles: While a range of methods for information retrieval 

from speckles have been developed, the distribution of information within speckles 

warrants deeper exploration, including the extent of delocalization in speckles and the 

sampling condition for information retrieval from speckles. This thesis delves into the 

foundational theories of speckle imaging from the perspective of information entropy. It 

examines the delocalized distribution of information in speckles and identifies the speckle 
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sampling condition for high-fidelity image retrieval. The concept of delocalized information 

is investigated by training neural networks to extract information from speckle regions of 

interest (ROIs) of varying sizes and locations. Furthermore, experimental evidence supports 

the retrieval of delocalized information with high fidelity when the sampled speckle ROIs 

contain sufficient information. 

(4) Classification through scattering media: Despite the burgeoning body of research in speckle 

imaging, the task of image retrieval from speckles when only limited information is 

available remains a challenge, as underscored in the discourse on delocalized information 

within speckles. In response to this quandary, this thesis introduces a neural network tailored 

for direct classification from speckles using sparse information. This model is designed to 

obviate the necessity for exhaustive speckle data prior to image retrieval, thereby facilitating 

classification predicated on the intrinsic characteristics of speckles. 

(5) Speckle-based optical cryptosystem: Beyond the scope of mitigating optical speckles, this 

thesis also ventures into the realm of their applications within cryptographic systems. 

Owing to their intrinsic randomness, optical speckles serve as exemplary candidates for 

ciphertexts, providing the dual benefits of enormously long secret keys and rapid encryption 

capabilities. Although speckle-based cryptosystems have been established for encoding 
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simple targets, speckle-based optical cryptosystems for complex tasks remain largely 

unexplored, such as encrypted face recognition. The primary challenge lies in decrypting 

images from rapidly changing optical speckles and recognizing faces from the decrypted 

images. Additionally, to achieve high accuracy in face recognition, it's crucial to maintain 

high fidelity in key facial features and detailed structures of the decrypted face images. This 

thesis introduces a straightforward yet remarkably effective speckle-based optical 

cryptosystem, and demonstrates its application in the field of encrypted human face 

recognition. 

 

1.7 Thesis Outline 

This thesis is structured into five studies in accordance with the aforementioned motivations, 

as outlined in Figure 1-5 and the following contents: 
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Figure 1-5 Thesis outline. 

 

Chapter 2 introduces a parameter-free algorithm for iterative wavefront shaping, aiming to 

manipulate wavefronts to focus through scattering media and setting the foundation for 

subsequent chapters. This algorithm amalgamates Genetic, Bat, and Dynamic Mutation 
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Algorithms to facilitate automatic optimization of parameters throughout the iterative 

wavefront optimization process. This approach is designed to circumvent the labor-intensive 

and expertise-reliant parameter-tuning procedure, which is inevitable for existing iterative 

algorithms. A series of experiments employing ground glass and multimode fibers substantiate 

the algorithm’s effectiveness and repeatability. 

Chapter 3 delves into the phenomenon of spatiotemporal decorrelation in optical speckles. It 

introduces a Generative Adversarial Network (GAN)-based framework with enhanced 

generalizability, capable of addressing the non-stationary scattering media and the resultant 

decorrelation between training and testing datasets. The ability to retrieve images from 

decorrelated speckles is an extension of the focusing capabilities developed in Chapter 2, 

showcasing the application of advanced computational methods to enhance image clarity. 

Furthermore, we separate training and testing datasets with different time intervals in 

experiments, so that training and testing data acquisition windows do not overlap in time. The 

results demonstrate that the proposed GAN framework can be trained to retrieve high-fidelity 

face images from speckles decorrelated to statuses not encountered during training, even after 

the optical system has been inactive for an extended period (up to 37 hours in experiments) and 

subsequently reactivated. This pre-emptive training capability, which preserves network 
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performance despite decorrelation, is pivotal for broadening neural networks in the realm of 

speckle imaging. 

Chapter 4 investigates the concept of delocalized information within optical speckles through 

the prism of information entropy, which further advances the understanding of information 

distribution in optical speckles. This chapter complements the practical applications explored 

in Chapters 2 and 3, providing a deeper theoretical understanding that informs the development 

of speckle-based techniques. Contrasting with ballistic imaging where light travels unimpeded, 

light is subject to multi-path scattering in a scattering medium. The multi-path scattering results 

in the spatial delocalization of a single point from the object across multiple points within the 

speckle, and conversely. Utilizing deep learning models, the research examines the distribution 

of image information within optical speckles. The experiments suggest that information is 

dispersed across the speckle field, enabling the retrieval of target information from speckles 

located in various spatial regions and of differing sizes. Subsequent to the analysis of physical 

models and experimental data, it has been empirically found that if the entropy of speckle 

autocorrelation exceeds that of the target autocorrelation, it is feasible to train neural networks 

to extract information from speckles with high fidelity, as indicated by a Pearson correlation 

coefficient greater than 0.9. The speckle sampling condition is crucial as it indicates that neural 
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networks can effectively retrieve information from speckles with high fidelity, as evidenced by 

the Pearson correlation coefficient (PCC) greater than 0.9, provided that the sampled speckle 

ROIs contain sufficient information. Otherwise, speckle ROIs are expected to be extended to 

include more information for high-fidelity information retrieval. Accordingly, this research 

paves the way for future developments in speckle-related research, and has the potential to 

inspire new applications and methodologies for biomedical imaging. 

In Chapter 5, delocalized information within speckles is further explored for its application in 

direct classification through scattering media rather than solely for imaging, which is a synthesis 

of the practical algorithmic advancements and theoretical insights from the previous chapters. 

Speckle Transformer, a model based on the vision transformer, is designed to harness 

delocalized information for accurately classifying targets. This method extracts features from 

speckles and bypasses the need for comprehensive speckle data prior to image retrieval. 

Consequently, it facilitates classification predicated on the intrinsic characteristics of speckles, 

even when information is sparse, and entropy analyses further highlight the influence of 

delocalized speckle information on classification accuracies. Notably, this approach surpasses 

the accuracy of methods that classify after image retrieval, marking a significant advancement 

in speckle-based classification techniques. 
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In Chapter 6, the focus shifts from overcoming speckles to harnessing them for a high-security 

optical cryptosystem, which signifies a departure from the primary focus on imaging to 

embracing the natural randomness of speckles and expanding the scope of speckle-based 

applications in the realm of security. A straightforward yet highly effective speckle-based 

cryptosystem is introduced, and its application in human face recognition is demonstrated. The 

cryptosystem leverages scattering ground glass as a physical secret key, encrypting face images 

into seemingly random optical speckles at the speed of light. Subsequently, a pre-trained U-

Net-based neural network decrypts images from speckles, enabling remarkable-fidelity 

retrieval for analysis by the subsequent face recognition algorithm. The high security, rapid 

processing, and cost-efficiency of this speckle-based cryptosystem make it a powerful tool for 

practical applications and the advancement of high-security cryptographic systems. 

Additionally, to the best of our knowledge, this is the first demonstration of a speckle-based 

optical cryptosystem for face recognition, which can be applied to other types of biometric data 

and optical data storage. 

In the final chapter (Chapter 7), the thesis culminates by encapsulating the key contributions 

and envisioning the trajectory for future research endeavors. Together, these chapters illustrate 

a comprehensive journey from overcoming the challenges posed by scattering to harnessing the 
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properties of speckles for diverse applications. Each chapter contributes a piece to the challenge 

of optical scattering, with the collective work pushing the boundaries of optical imaging and 

expanding its potential applications. Ultimately, this thesis aspires to make a meaningful impact 

on the wider research community through a comprehensive exploration of speckle analysis and 

its practical applications, paving the way for novel research pathways and potential 

advancements in the field of biomedical optics. 
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2  PARAMETER-FREE 

ALGORITHM FOR ITERATIVE 

WAVEFRONT SHAPING 

This chapter is modified from the following published peer-reviewed paper: 

Zhao, Q.†, Woo, C. M.†, Li, H., Zhong, T., Yu, Z.#, & Lai, P.# (2021). Parameter-free 

optimization algorithm for iterative wavefront shaping. Optics Letters, 46(12): 2880-2883.« 

 

Optical focusing through scattering media has a significant impact on optical applications in 

biological tissues. Accordingly, iterative wavefront shaping has been successfully used to focus 

light through or inside scattering media, and various heuristic algorithms have been introduced 

to improve the performance. While encouraging, in most heuristic algorithms for iterative 

wavefront shaping, lots of efforts might be needed to tune parameters towards robust and 

optimum optimization. Moreover, optimal parameters might differ for different scattering 

samples and experimental conditions, and parameter-tuning is a time and experience consuming 
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work. In this chapter, a parameter-free algorithm is proposed for iterative wavefront shaping. 

The parameter-free algorithm combines a traditional genetic algorithm with a bat algorithm, 

and the mutation rate can be automatically calculated through real-time feedback. Using the 

proposed parameter-free algorithm in iterative wavefront shaping, robust and optimum 

performance can be achieved without a parameter-tuning process. 

 

2.1 Introduction 

Light, serving as a basic tool, has been widely used in imaging, diagnosis, therapy, stimulation, 

etc. [1]. One of the key research questions in these fields is to address strong scattering of light 

within thick biological samples [2]. Because of the inhomogeneous refractive index distribution 

(wavelength-scale), photons suffer from multiple scattering events, and the carried information 

is scrambled [3], limiting the viability of high-resolution optical techniques within 1mm 

beneath the tissue surface [4]. Iterative wavefront shaping (iterative WFS) was first proposed 

in 2007 to compensate for phase distortions and achieve controllable optical delivery through 

complex media [5]. In the past decade, iterative WFS has seen remarkable progresses in deep 

optical imaging [6]. Various algorithms, such as a genetic algorithm (GA) [7], simulated 
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annealing algorithm (SA) [8], particle swarm optimization [9], and bat algorithm (BA) [10], 

have been introduced to improve the performance. For all these algorithms, it is generally 

necessary to conduct a parameter tuning procedure to obtain optimum parameters for 

satisfactory focusing performance inside or through scattering media. Moreover, optimized 

parameters may vary for different samples and environmental conditions, such as noise levels 

[11]. Efforts are required to obtain optimized parameters for a particular application, which 

poses an obstacle to newcomers and hinders the extension of iterative WFS into new research 

fields [12-13]. 

In this chapter, a parameter-free algorithm (PFA) will be introduced, aiming to achieve smart 

iterative WFS using a digital micromirror device (DMD). The PFA is a combination of the BA 

and the GA, integrating the merits of rapid convergence of the BA with the high robustness of 

the GA. The framework of the PFA inherits the framework of the GA. The solution of the PFA 

to find the optimum wavefronts in each iteration is similar to that of the BA. A dynamic 

mutation method is used to automatically obtain the mutation rate (MR) [14]. The only 

parameter that needs to be preset is the number of bats, which are the candidate solutions in 

each iteration. That said, through the experiment, it is found that the variation in the number of 

bats has a trivial influence on the performance of the PFA, which is systematically better than 



42 

 

that of the BA and the GA. As a result, using our method in iterative WFS, one can achieve a 

better enhancement ratio without a parameter tuning process. The PFA can be further used in 

other research fields in which iterative WFS can contribute, such as controlling multimode 

interactions in optical fibers [15], manipulating multi-dimensional characteristics of the fiber 

laser [16], and focusing optical laser pulses through scattering media [17]. 

 

2.2 Methods 

In iterative WFS, the resultant optical focus within or through scattering media is the result of 

the superposition of all output channels from corresponding control units on a spatial light 

modulator, such as a DMD [18]. The theoretical value of the enhancement ratio (also referred 

to as the peak-to-background intensity ratio) is achieved when every output channel contributes 

positively to the optical focus. The most important step in the PFA is to calculate the MR in 

each measurement, since it is in direct proportion to the number of units negatively contributing 

to the optical focus. In each measurement, the key is to adjust the units which negatively 

contribute to the enhancement ratio of the optical focus. 

To address this question, a transmission matrix model is introduced, where a transmission 
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matrix 𝑇 is used to bridge the relationship between the input field 𝐸 and the output field 𝑈 

[19]: 

 

𝑈 = [𝑢1⋯𝑢𝑚⋯𝑢𝑀]
† = 𝑇 ∙ 𝐸 

   =

[
 
 
 
 
𝑡11 ⋯ 𝑡1𝑛 ⋯ 𝑡1𝑁
⋮ ⋱   ⋮
𝑡𝑚1  𝑡𝑚𝑛  𝑡𝑚𝑁
⋮   ⋱ ⋮
𝑡𝑀1 ⋯ 𝑡𝑀𝑛 ⋯ 𝑡𝑀𝑁]

 
 
 
 

∙ [𝑑1⋯𝑑𝑛⋯𝑑𝑁]
†𝑒 

 

(2-1) 

 𝑑𝑖 = {
0
1
 𝑓𝑜𝑟 DMD, (2-2) 

where 𝑈 = [𝑢1⋯𝑢𝑚⋯𝑢𝑀]
†  contains 𝑀  output channels, and 𝑢𝑚  is the 𝑚𝑡ℎ  output 

channel on the output plane. 𝐷 = [𝑑1⋯𝑑𝑛⋯𝑑𝑁]
† is a binary wavefront matrix on the DMD, 

which contains 𝑁  control units. The character 𝑒  represents the electric field of a uniform 

plane wave projected onto the DMD. 𝐸 = [𝑑1⋯𝑑𝑛⋯𝑑𝑁]
†𝑒  is the input field, which is 

reflected from the DMD. 

For a randomly picked output channel 𝑢𝑚 serving as the target output channel to generate an 

optical focus, it is the product of 𝑚𝑡ℎ  row 𝑇𝑚  in the transmission matrix 𝑇  and the 

wavefront matrix 𝐷 . Here we realign 𝑇𝑚  into two parts. The first 𝐾𝑡ℎ  units (𝐾 ≤ 𝑁 ) are 

correctly set, and the remaining units are incorrectly set: 



44 

 

 

𝑢𝑚 = 𝑇𝑚𝐷𝑒 = (

𝑡𝑚,1𝑑𝑚,1 +⋯+ 𝑡𝑚,𝐾𝑑𝑚,𝐾⏟                
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 unit𝑠

+

𝑡𝑚,𝐾+1𝑑𝑚,𝐾+1 +⋯+ 𝑡𝑚,𝑁𝑑𝑚,𝑁⏟                    
𝑤𝑟𝑜𝑛𝑔 𝑢𝑛𝑖𝑡𝑠

)𝑒. 

𝑢𝑚 = 𝑇𝑚𝐷𝑒 =

(

 
 𝑡𝑚,1𝑑𝑚,1 +⋯+ 𝑡𝑚,𝐾𝑑𝑚,𝐾⏟                

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑢𝑛𝑖𝑡𝑠

+

𝑡𝑚,𝐾+1𝑑𝑚,𝐾+1 +⋯+ 𝑡𝑚,𝑁𝑑𝑚,𝑁⏟                    
𝑤𝑟𝑜𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 )

 
 
𝑒. 

(2-3) 

According to Ref. [20], 𝑢𝑚 can be calculated as 

 |𝑢𝑚| = (2𝑐 − 1) ⋅ 𝑁 ⋅
𝜎

√2𝜋
⋅ |𝑒|, (2-4) 

where 𝜎 is the standard deviation of the distribution of the real part of 𝑇, and 𝑐 = 𝐾/𝑁 is 

the ratio of correct units, and it should be larger than 0.5, as only less than half of the units will 

be changed in each measurement to increase the robustness of the algorithm. 

The maximum value of |𝑢𝑚|  can be achieved when all units on the DMD are correctly 

adjusted: |𝑢𝑚_𝑚𝑎𝑥| = |𝑢𝑚||𝑟=1 = 𝑁 ∙
𝜎

√2𝜋
∙ |𝑒|. Thus, the focusing efficiency can be expressed 

by 

 𝜂 =
𝐼𝑚

𝐼𝑚_𝑚𝑎𝑥
=

|𝑢𝑚|
2

|𝑢𝑚_𝑚𝑎𝑥|
2 = (2𝑐 − 1)

2, (2-5) 

where 𝐼𝑚  is the intensity of the instantaneous focus, and 𝐼𝑚_𝑚𝑎𝑥  is the maximum focal 

intensity that can be achieved [20]. Thus, 𝑐 can be obtained through 𝜂 directly: 

 𝑐 =
1 + √𝜂

2
 (2-6) 
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In this chapter, the dynamic mutation rate of the newly generated bats 𝑃 is related to 𝑐 and the 

bat number ℎ, which is defined as 

 𝑃 =
1 − 𝑐

ℎ
=
1 − √𝜂

2ℎ
, (2-7) 

where ℎ is the predetermined number of bats in the PFA. During each iteration, the newly 

generated bats will be dynamically mutated according to the dynamic mutation rate 𝑃. To be 

specific, we should randomly select ⌈𝑃 × 𝑁⌉ units on the newly generated pattern and revise 

them (⌈ ⌉ represents rounding up). 

The dynamic mutation rate 𝑃 is then applied in the PFA, which is a combination of the GA 

and BA, to achieve reinforced performance [21]: the PFA inherits the MR of the GA, and its 

strategy to search for the optimum solution is similar to that of the BA. To start with, the flow 

charts of the BA and GA are shown in Figure 2-1a and Figure 2-1b, respectively. The BA is a 

heuristic optimization algorithm inspired by the echolocation behavior of bats. A population of 

bats (i.e., ℎ bats) fly randomly with different velocities 𝑣, positions 𝑥, and frequencies 𝑄 to 

search for prey. Besides, when approaching the prey, bats tend to decrease the loudness 𝐿 and 

increase the pulse emission rate 𝑃𝐸𝑅 of ultrasound waves, which can be referred to as the 

traditional BA [22]. In each iteration (one iteration contains ℎ measurements), new solutions 

(i.e., DMD patterns) are generated by flying around the best-performing bat or just flying 
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randomly, according to 𝑃𝐸𝑅 of the bat. New solutions are evaluated according to the feedback 

function (i.e., enhancement ratio). Then better-performing solutions will be adopted. After 

many iterations, the optimal solution can be achieved. As for the GA, the new offsprings are 

the cross-fertilization of their parents with a mutation rate [23]. 

For the PFA, we combine the flying around the best-performing bat in the BA and the mutation 

rate of the GA, as shown in Figure 2-1c. In each measurement, the current bat is cross-fertilized 

with the best-performing bat and a random binary template to generate a new bat (cross-

fertilization rate = 0.5). After cross-fertilization, the dynamic mutation rate 𝑃 of the current 

bat is calculated according to Equation (2-7), and some pixels of the new solution are mutated 

based on the dynamic mutation rate 𝑃. If the new bat performs better than the current one, the 

current bat will be replaced by the new one. An optimal solution will be achieved after many 

iterations. 
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Figure 2-1 Flow charts of different optimization algorithms used in iterative WFS: (a) BA, 

(b) GA, and (c) PFA. 
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2.3 Results 

2.3.1 Simulations 

The enhancement ratios of optical foci achieved by three algorithms (PFA, BA, and GA) in 

iterative WFS are then numerically simulated with parameters listed in Table 2-1. The control 

unit number on the DMD is 1024, and the transmission matrix output mode number is 400 in 

simulation. As shown in Figure 2-2a, there is a big difference between the enhancement ratios 

for BAs with well-tuned and improper parameters, even though only one parameter (i.e., 𝑃𝐸𝑅) 

is different, highlighting the significance and necessity of having appropriate parameters in 

these iterative WFS methods. Moreover, the enhancement ratio using the PFA is comparatively 

higher than that using the BA or the GA of equal bats or offsprings. In the PFA, the only 

parameter that needs to be set is the number of bats. To further test how this number affects the 

performance, simulations using different numbers of bats for the PFA are conducted. The results, 

as shown in Figure 2-2b, exhibit weak correlations with the bat numbers in a large range of 20 

to 100. This, again, suggests that the proposed algorithm is really smart and free from any prior 

knowledge about the parameters. 
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Table 2-1 Parameters used in simulations for different algorithms. 

Algorithm PFA 
BA with well-

tuned parameters 

BA with improper 

parameters 

GA with well-tuned 

parameters 

Parameters used 

in simulations 
N/A 

QMin = 0.08 

QMax = 0.35 

PER = 0.035 

L = 0.99 

QMin = 0.08 

QMax = 0.35 

PER = 0. 35 

L = 0.99 

MRInitial = 0.022 

MRFinal = 0.008 

DF = 1000 

QMin: Minimum frequency; QMax: Maximum frequency; PER: Pulse emission rate; L: Loudness; 

MRInitial: Initial mutation rate; MRFinal: Final mutation rate; DF: Decay factor of the mutation 

rate. N/A means that no parameter is needed to be preset. The numbers of bats in PFA and BA 

are 40. The numbers of population and offsprings in GA are 40. 

 

Figure 2-2 Simulation results: (a) different algorithms with 40 bats or offsprings. For a 

regular BA and GA, well-tuned parameters are adopted as provided in Table 2-1. (b) 

Results of PFAs with 20, 40, 50, 80, 90, and 100 bats. 
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2.3.2 Experiments 

After simulation, we built an optical setup to assess the PFA, which is depicted in Figure 2-3. 

A continuous-wave laser source (EXLSR-532-300-CDRH, Spectra Physics, U.S.) with a 

wavelength of 532 nm and maximum energy of 300 mW is used as the light source. The laser 

output is expanded by a pair of convex lenses (L1 and L2) to illuminate the DMD (DLP4100, 

Texas Instruments Inc., U.S.). The DMD serves as a binary amplitude spatial light modulator, 

with 1024 independent units being utilized in experiments. After being modulated and reflected 

by the DMD, the light is shrunk by another pair of lenses (L3 and L4), and then focused onto a 

ground glass (DG10-220-MD, Thorlabs, U.S., diameter of 2.54 cm, 220 grits) by using an 

objective lens (UIS 2 Plan N 10×/0.25, Olympus, Japan). The resultant speckles from the 

ground glass are recorded by a CMOS camera (Blackfly S BFS-U3-04S2M-CS, FLIR, Canada). 

Each measurement took about 100 ms in experiments. 

The increases of the focal intensity enhancement ratio with the number of iterations are shown 

in Figure 2-4a. The parameters used for different algorithms in experiments are listed in Table 

2-2. Very different performances are observed for the BA with well-tuned and improper 

parameters, which agrees well with simulations. The maximum enhancement ratio obtained 

with the PFA is 121, which is ∼25% and ∼20% higher than that of the GA and the BA, 
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respectively. Additionally, Figure 2-4b shows the normalized speckles after optimization in 

experiments. As seen, the focus achieved by the PFA has the highest peak intensity due to the 

best optimization performance. 

 

 

Figure 2-3 Experimental setup. Laser source: 532 nm laser; L1, f = 60 mm; L2 and L3, f 

= 250 mm; L4, f = 50 mm. DMD, digital micromirror device. 
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Figure 2-4 Experimental results for different algorithms. (a) Different algorithms with 40 

bats or offsprings. (b) Focal speckles after optimization. 

 

Table 2-2 Parameters used in experiments for different algorithms. 

Algorithm PFA 
BA with well-

tuned parameters 

BA with improper 

parameters 

GA with well-tuned 

parameters 

Parameters used 

in experiments 
N/A 

QMin=0.08 

QMax=0.35 

PER=1 

L=0.99 

QMin=0.08 

QMax=0.35 

PER=0. 5 

L=0.99 

MRInitial=0.008 

MRFinal=0.002 

DF=2000 

QMin: Minimum frequency; QMax: Maximum frequency; PER: Pulse emission rate; L: Loudness; 

MRInitial: Initial mutation rate; MRFinal: Final mutation rate; DF: Decay factor of the mutation 

rate. N/A means that no parameter is needed to be preset. The numbers of bats in PFA and BA 

are 40. The numbers of population and offsprings in GA are 40. 
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To verify the universality of the PFA under different conditions, such as different scattering 

media, we utilized a multimode fiber (MMF, SUH200, Xinrui, China, core diameter = 200µm, 

NA = 0.22, length = 0.5m) as the scattering medium for comparison. The results of the ground 

glass and the MMF are shown in Figure 2-5. As seen, although the absolute enhancement ratios 

differ between the ground glass and the MMF experiments, the independence of performance 

on the number of bats is consistent. 

These results confirm that the proposed parameter-free algorithm can be used to obtain superior 

performance without priori knowledge or parameter tuning for iterative WFS. In general, to get 

a satisfying enhancement ratio in iterative WFS, a careful parameter tuning procedure should 

be applied to fit for diverse experiment conditions. With the PFA, researchers can be set free 

from this time-consuming procedure. Even a beginner can steer iterative WFS optimization that 

outperforms the GA and BA. 
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Figure 2-5 Experimental results of PFAs with 20, 40, 50, 80, 90, and 100 bats for (a) ground 

glass and (b) MMF. 

 

2.4 Discussions 

At last, the performance of the PFA in the existence of noises and solutions to further improve 

the enhancement ratio is discussed. The PFA is derived from the dynamic mutation algorithm, 

which has demonstrated high adaptability against perturbations [20], and the PFA inherits this 

feature. A field programmable gate array-based iterative WFS system can be implemented to 

achieve real-time optical focus and overcome environmental noises [24]. Moreover, this fast 

iterative WFS version allows more input units to be used to improve the enhancement ratio in 

a short duration [25]. Further, the super-pixel encoding method can be implemented to achieve 
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phase modulation and improve the focusing efficiency [26]. With that, 𝜂 in Equation (2-5), 

Equation (2-6), and Equation (2-7) should be adjusted to the ratio between the instant 

enhancement ratio and the theoretical enhancement ratio (i.e., 𝑁 × 𝜋/4 for phase modulation) 

[18]. 

 

2.5 Conclusion 

In conclusion, this chapter introduces a Parameter-free Algorithm (PFA) for iterative wavefront 

shaping that draws inspiration from both the Bat Algorithm (BA) and the Genetic Algorithm 

(GA). A standout feature of PFA is its ability to autonomously calculate the mutation rate via 

real-time feedback, obviating the need for the laborious and expertise-reliant parameter tuning 

process that plagues existing iterative algorithms. This innovation simplifies the optimization 

process and holds significant promise for researchers, particularly those new to the field. 

Furthermore, PFA demonstrates superior performance over traditional algorithms, and PFA’s 

versatility is underscored by its potential applicability, including optical focusing and imaging 

through or within scattering media.» 
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3  SPATIOTEMPORALLY 

DECORRELATED SPECKLES 

This chapter is modified based on the following manuscript that is currently under review: 

Zhao, Q.†, Li, H.†, Zhong, T.†, Cheng, S., Huang, H., Yao, J., Li, W., Li, H., Woo, C. M., Gong, 

L., Zheng, Y.#, Yu, Z.#, & Lai, P.# (2023). Extended learning generalizability for high-fidelity 

human face imaging from spatiotemporally decorrelated speckles. Under review. 

 

Computational imaging through scattering media has long been a coveted yet challenging 

pursuit. Researchers have made strides in extracting target information from speckles, primarily 

through iterative wavefront shaping (as detailed in Chapter 2), calibrating the transmission 

matrix of the scattering medium, or employing neural networks. These methods effectively 

quantify the relationship between the targets and the corresponding speckles. However, the 

fidelity of the retrieved images is significantly compromised when the medium’s status changes 

due to intrinsic motion or external perturbations. Such variability leads to a decorrelation 

between the data used for training and that used for validation, which has impeded the practical 
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applications of these frameworks. 

In this chapter, we introduce a generative adversarial network (GAN)-based framework with 

enhanced generalizability, designed to address the spatiotemporal instabilities of scattering 

media and the resultant decorrelation between training and testing datasets. Experiments 

demonstrate that the proposed GAN framework can be trained to retrieve face images from 

speckles, even when the scattering medium has undergone decorrelation to unknown statuses 

after network training. Notably, the proposed GAN outperforms existing learning-based 

methods by non-holographically retrieving images from unstable scattering media and 

effectively managing speckle decorrelation, even after the optical system has been inactive for 

an extended period (up to 37 hours in experiments) and subsequently reactivated. This 

remarkable capability paves the way for broad applications where networks can be pre-trained 

and maintain their effectiveness for data acquired at a later time. Such resilience is pivotal for 

broadening the scope of learning-based methodologies in speckle imaging, encompassing 

applications like imaging through deep tissues and target sensing under extreme environmental 

conditions. 
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3.1 Introduction 

Optical imaging stands as a cornerstone in the exploration of the microscopic and macroscopic 

realms, ranging from cellular structures to whole bodies, and this field has continually evolved, 

offering scalable resolution and expansive fields of view [1-2]. In environments like biological 

tissues or analogous media such as fog, dusty air, and turbid water, scattering predominantly 

governs light-matter interactions, curtailing imaging depth and compromising resolution. 

Coherent light exacerbates this challenge, producing speckles with stark contrasts that obscure 

clear imaging and interpretation [3]. Seminal efforts [4-6], particularly the transmission matrix 

approach, have addressed static scenarios by linearly correlating input and output fields [7]. 

While this enables computational retrieval of images from speckles via the inverse transmission 

matrix, the linear model’s limitations often yield suboptimal imaging quality due to the 

insufficient accuracy of the linear TM model [8]. 

The advent of deep learning has catalyzed a paradigm shift, with deep neural networks (DNNs) 

significantly refining optical system performance. These networks account for the inherent 

nonlinearity in light-matter interactions and perturbations [9-15], thereby elevating imaging 

fidelity [16-19]. 
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Despite their success in stationary scattering environments [16], DNNs face challenges when 

the scattering medium or optical system is non-stationary due to motion, perturbations, or 

vibrations. Such non-stationarity leads to speckle decorrelation, undermining modulation or 

imaging performance [20-23]. Statistic invariants of speckles are therefore explored among a 

set of diffusers with the same macroscopic parameters or a multimode fiber under different 

configurations [24-27]. While these studies show promise, thus far the DNNs primarily operate 

with simple objects (digits, letters, and binary patterns) trained on extensive datasets reflecting 

different statuses of the scattering medium. Crucially, these datasets are often collected 

concurrently, resulting in a temporal overlap that maintains the correlation between training and 

testing data. This correlation allows for low generalizability to unknown scattering medium 

statuses. 

In practical scenarios, however, significant time lapses between training and testing are 

common, necessitating the use of data collected under altered medium conditions. This 

temporal gap introduces decorrelation, diminishing the pre-trained networks’ efficacy. Despite 

training on diverse data representing various medium statuses, DNN performance degrades 

when confronted with changed conditions. Thus, in real-world applications where the scattering 

medium deviates from previously encountered statuses, the pre-trained networks struggle to 
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adapt to the decorrelated speckles. 

In this chapter, we introduce a generative adversarial network (GAN) framework capable of 

training to recover complex face images from a dynamic scattering medium. The framework 

employs a U-Net-based generator to discern intrinsic speckle features, enabling the high-fidelity 

retrieval of images. Concurrently, a multi-layer convolution-based discriminator assesses the 

retrieved images, providing critical feedback to refine the generator’s outputs [28-30]. Notably, 

the GAN’s generator harnesses speckle features to retrieve images, while the discriminator 

guides the generator in enhancing the retrieved images. 

Experimental findings affirm that the GAN retains its ability to retrieve face images from 

speckles, even when the intervals between training and testing datasets are extended, resulting 

in minimal correlation. This evidences the GAN’s remarkable temporal generalizability. The 

framework’s robustness is further corroborated through experiments utilizing a non-stationary 

metasurface as the scattering medium. Here, the network is initially trained with collected data, 

after which the optical system is deactivated for 37 hours (or longer if necessary) and 

subsequently reactivated to gather testing data, thereby simulating real-world conditions. To 

our knowledge, this represents the inaugural instance of a neural network being trained to 

retrieve high-fidelity face images from speckles gathered on different days from training data. 
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In summation, the proposed GAN showcases exceptional temporal generalizability, 

surmounting the challenges associated with imaging through a non-stationary scattering 

medium of unknown statuses. This opens a door to opportunities for non-holographically 

retrieving intricate images from decorrelated speckles, indicating a significant advancement in 

the field. 

 

3.2 Methods 

3.2.1 Optical Setups 

The optical system for acquiring speckles is depicted in Figure 3-1a. The light source is a 

continuous-wave 532-nm laser (EXLSR-532-300-CDRH, Single mode, 300 mW, Spectra-

Physics, USA). The laser beam from the light source is first expanded by a 4-f system (L1 and 

L2) to cover the entire aperture of the spatial light modulator (SLM, HOLOEYE PLUTO 

VIS056 1080p, German). Then the image information displayed on the SLM modulates the 

wavefront. The information to modulate the input wavefront is the face image from thumbnails 

in the Flickr Faces High Quality (FFHQ) database [31]. Here, the 128×128 thumbnails are up-

sampled to 640×640 and displayed at the center of the SLM. After SLM modulation, the 
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modulated light is shrunk by another 4-f system (L3 and L4) and then focused by an objective 

lens (RMS20X, Olympus, Japan). The focused laser travels through a scattering medium, 

transforming into random optical speckles, which are captured by a CMOS camera (FL3-U3-

32S2M-CS, PointGrey, Canada). The scattering medium used in experiments includes a ground 

glass diffuser and a disordered metasurface. During the data collection, ambient perturbations 

(e.g., moving people, other on-going experiments on the same optical table, running scientific 

instruments in other rooms, etc.) could mechanically shift the scattering medium, and laser 

coherence depends on the working stability of the laser (not intentionally controlled), leading 

to decorrelated speckles. 
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Figure 3-1 (a) Diagram of the optical setup for acquiring speckles. L1 and L2: the first 4-

f system to expand the laser beam. SLM: spatial light modulator. L3 and L4: the second 

4-f system to shrink the laser beam. Scattering medium: ground glass (GD) or disordered 

metasurface (DM). (b) Speckle background PCC (SBP) during six 40-min ground glass 

experiments. Lower SBP corresponds to a larger deviation from the initial status and 

lower stability. Final SBP is the SBP of each data group at the end (marked in green on 

the right Y axis). 
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3.2.2 Data Acquisition and Speckle Instability 

Experimentally, to generate data at different levels of instability, a scattering medium (i.e., 

ground glass) is constantly disturbed by surrounding perturbations, including air flow and 

platform vibrations, etc. The corresponding instability is characterized by variations of 

background speckles generated by loading a uniform phase pattern (all phase elements set to 

2π on the SLM) every minute (i.e., every 500 captured speckles). 

In the ground glass experiments, the duration for the collection of each data group is up to 40 

minutes. Every captured background speckle is compared with the initial background speckle 

for the calculation of Pearson correlation coefficient (PCC), which is termed the speckle 

background PCC (SBP). As shown in Figure 3-1b, the SBP of six groups of data continuously 

decays with time in experiments due to environmental perturbations (including air flow, 

platform vibrations, etc.), and a lower SBP corresponds to a higher deviation from the initial 

status and hence lower stability. With monotonic variations, we can mark SBP at the end of 

each group (i.e., Final SBP) to distinguish different groups. For example, for Group 1, Final 

SBP is 0.8846 (the highest among six groups), indicating relatively stationary conditions; for 

Group 6, SBP drops down more quickly with Final SBP of 0.0139 < 1/e ≈ 0.3678, indicating 

speckles have become totally decorrelated and the dataset includes significantly perturbed 
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information [18,25]. In the following experiments, these six groups of datasets are utilized to 

train and test the proposed GAN framework. 

 

3.2.3 Neural Networks 

The proposed GAN includes a generator and a discriminator, as shown in Figure 3-2a, and the 

related Python code is available on GitHub (https://github.com/863zq/863zq.github.io/blob/ 

main/Code/Main_complex_GAN.py). 

The generator is based on U-Net, which is extensively employed in speckle imaging 

[5,13,19,23]. Compared with traditional U-Net [29], the primary difference is that convolution 

layers here are all based on complex algebra, i.e., inputs, outputs, and parameters in 

convolutions are all complex-valued, in order to more accurately mimic the random scattering 

process as modeled by the transmission matrix theory. Here, the input of the U-Net-based 

generator is the speckle with 128×128 pixels, which is transferred into the complex domain 

with zero phase. Then, the input speckles can be processed by the generator’s encoders (four 

down-sampling paths, blue filters in Figure 3-2b) and decoders (four up-sampling paths, red 

filters in Figure 3-2b). After that, the final layer converts the complex feature map into real 



70 

 

numbers and outputs the retrieved images with 64×64 pixels.  

 

 

Figure 3-2 Schematic of the proposed GAN framework. (a) GAN structure: the generator 

is based on U-Net, with speckle as the input and retrieved images as the output; the 

discriminator is based on six convolutional layers and one linear layer, with retrieved 

images or ground truth images as input and evaluated loss as output. Ground truth image: 
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Copyright 2010, appnight-122, by Existence Church, Flickr (https://www.flickr.com/ 

photos/sandiegochurch/4379311601/); the original images are converted to grayscale, 

under terms of the CC-BY 2.0 license. (b) Detailed structures of the generator: the 

encoders are highlighted in blue, and the decoders are highlighted in red. The dimensions 

of the feature maps are specified next to each block. 

 

In addition to the generator, a discriminator based on six convolutional layers is designed to 

evaluate the retrieved images from the generator, as shown in Figure 3-2a. With the retrieved 

image or the ground truth as the input, the discriminator’s output is the evaluated loss to 

discriminate between the retrieved images and the corresponding ground truth images, and the 

generator tries to cheat the discriminator so that the retrieved image is refined to approach the 

corresponding ground truth image [30]. After network training, the so-called Nash equilibrium 

is eventually reached, and the generator then successfully retrieves images from speckles with 

high fidelity [29]. 
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3.2.4 Network Training 

The loss function of the generator 𝐿𝐺  combines the image loss 𝐿𝐺,𝑖𝑚𝑎𝑔𝑒 and the adversarial 

loss 𝐿𝐺,𝑎𝑑𝑣 . Here, the image loss combines the mean square error 𝑀𝑆𝐸  and the Pearson 

correlation coefficient 𝑃𝐶𝐶 to reveal differences between the retrieved image 𝐺(𝑥) (i.e., the 

generator output when 𝑥 is the input speckle) and the ground truth 𝑦. The adversarial loss 

𝐿𝐺,𝑎𝑑𝑣 is 𝑀𝑆𝐸 between the discriminator output with the generator output as the input and the 

discriminator output with the corresponding ground truth as the input. Then, the final loss 

function for the generator 𝐿𝐺   is a weighted average of the adversarial loss 𝐿𝐺,𝑎𝑑𝑣  and the 

image loss 𝐿𝐺,𝑖𝑚𝑎𝑔𝑒 . The weights in 𝐿𝐺   here are empirically tuned to improve the 

performance of the generator: 

 𝐿𝐺,𝑖𝑚𝑎𝑔𝑒  = 𝑀𝑆𝐸[𝐺(𝑥), 𝑦] − 𝑃𝐶𝐶[𝐺(𝑥), 𝑦] (3-1) 

 𝐿𝐺,𝑎𝑑𝑣  =  𝑀𝑆𝐸[𝐷(𝐺(𝑥)), 𝐷(𝑦)] (3-2) 

 𝐿𝐺  =  0.2 × 𝐿𝐺,𝑎𝑑𝑣   +  0.8 × 𝐿𝐺,𝑖𝑚𝑎𝑔𝑒 (3-3) 

 𝑀𝑆𝐸(𝑥, 𝑦) = 〈(𝑥 − 𝑦)2〉 (3-4) 

 𝑃𝐶𝐶(𝑥, 𝑦) =
〈(𝑥 − 〈𝑥〉)(𝑦 − 〈𝑦〉)〉

𝜎𝑥𝜎𝑦
 (3-5) 

In Equation (3-5), 〈 〉 and 𝜎 denote the average operation and standard deviation, respectively. 
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The proposed discriminator is designed to assess the generator output, and the discriminator 

output is expected to be image loss. The proposed discriminator is different from discriminators 

in traditional GAN to generate new images, which discriminate images and noises. In the 

proposed discriminator, the loss function 𝐿𝐷  is 𝑀𝑆𝐸  between the predicted output of the 

discriminator, i.e., 𝐷(𝐺(𝑥)), and the real image loss 𝐿𝐺,𝑖𝑚𝑎𝑔𝑒(𝐺(𝑥), 𝑦): 

 𝐿𝐷  =  𝑀𝑆𝐸 (𝐷(𝐺(𝑥)), 𝐿𝐺,𝑖𝑚𝑎𝑔𝑒(𝐺(𝑥), 𝑦)) (3-6) 

During training and testing, each group (Group 1-6 in Figure 3-1b) contains 20,000 image-

speckle pairs, and six neural networks are individually trained with only one group of data. 

Human face images are collected from thumbnails in the FFHQ dataset [31], from which 

128×128 thumbnails are down-sampled to 64×64 as the ground truth images. The dimensions 

of the speckles fed into the generator are 128×128. During network training, GAN is trained 

for 20 epochs using Adam optimizers with batch size = 32, and the initial learning rate is 0.0001 

with cosine annealing. Furthermore, in each training epoch (as illustrated in Figure 3-3), the 

discriminator is trained five times, while the generator is trained once to enhance the 

discrimination between retrieved images and ground truth images [32]. 
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Figure 3-3 Flow chart of GAN training: during each GAN training epoch, the generator 

is trained only once, but the discriminator is trained five times to improve the convergence 

and network performance. 

 

Notably, speckles used during network testing are sampled after the training dataset collection 

is finished. As for different experiments, the acquisition time intervals between training and 
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testing datasets vary, in order to test the network performance at different scattering medium 

statuses. As for the software framework, we utilize PyTorch 2.0.1 with CUDA 12.1 and Python 

3.11.4, which is implemented on a Dell Precision Tower 5810 with Intel Xeon E5-1650 V3 

CPU, 64 GB RAM, and a Nvidia GeForce RTX 3090 GPU. During network training, one epoch 

takes about 20 minutes for a training dataset with 15,000 samples, and the entire training 

process with 20 epochs lasts for about 6 hours. 

 

3.3 Results 

3.3.1 Imaging through a Non-Stationary Diffuser 

Evaluation for the proposed GAN is first based on a ground glass diffuser (220-grit ground 

glass), which is continuously subjected to environmental vibrations and random perturbations 

during data acquisition. 

 

3.3.1.1 Qualitative Analysis 

In order to evaluate the applicability of the proposed GAN in practical applications, we separate 

training and testing datasets with different time intervals, so that training and testing data 
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acquisition windows do not overlap in time; the scattering medium statuses corresponding to 

the testing dataset (red points in Figure 3-4a, including 32 speckles) vary and decorrelate from 

those for the training dataset (corresponding to the training dataset durations T in Figure 3-4a). 

Three representative sets, Groups 1, 4, and 6, are analyzed here, as shown in Figure 3-4a. The 

entire dataset duration (T) is 40 min, and the data that cover the first 1/4 (T = 10 min), 1/2 (T = 

20 min), and 3/4 (T = 30 min) of the full dataset are respectively used as the training dataset, 

whose training sample amounts are 5,000, 10,000, and 15,000 speckle-image pairs, respectively. 

Then, the testing dataset is sampled with different time intervals (Δt) after the training dataset 

(red points in Figure 3-4a), such as 1 min, 5 min, and 10 min, etc. Qualitative results from 

representative sets, i.e., Groups 1, 4, and 6, are taken as examples in Figure 3-4. 

Performance with T = 30 min (15,000 training samples) is illustrated in Figure 3-4b. As for 

Group 1 (Final SBP = 0.8846), PCC between the retrieved image and the corresponding ground 

truth in the testing dataset (called imPCC for simplicity) can reach 0.9665 when Δt = 1 min, 

and fine features, such as eyes, eyebrows, noses, ears, mouths, and cheeks, can be clearly seen 

with high fidelity. As Δt increases to 5 min and 10 min, the visualized results are still retrieved 

with high fidelity (imPCC is 0.9526 and 0.9499, respectively), although SBP drops from 0.9493 

(Δt = 1 min) to 0.9295 (Δt = 5 min) and 0.9009 (Δt = 10 min). With stronger decorrelation, i.e., 
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Group 4 with Final SBP = 0.3987, the retrieval performance (Group 4 in Figure 3-4b) is 

comparable to Group 1, while the retrieved image PCC of Group 4 is just slightly lower than 

that of Group 1 due to non-stationary medium statuses. Under highly non-stationary conditions, 

i.e., Group 6 with Final SBP = 0.0139, the performance deteriorates with larger time intervals, 

and imPCC is significantly lower than that in Groups 1 and 4. 

With shorter training durations, e.g., T = 20 min (10,000 training samples), although visually 

discernable, the overall imPCCs for Δt = 1, 5, and 10 min in Figure 3-4c are systematically 

lower than their counterparts in Figure 3-4b. As for Figure 3-4c Ⅳ and Ⅴ, when the time 

intervals are respectively extended to 15 min and 20 min, the testing datasets decorrelate more 

from the training datasets. As a result, the retrieved images appear blurrier than before. 

Especially for Group 6 in Figure 3-4c Ⅳ and Ⅴ, imPCC is as low as 0.3818 and 0.2620, and 

important facial features (such as eyes and cheeks) become more obscure. When the training 

duration is even shortened to 10 min with merely 5,000 training samples, as shown in Figure 

3-4d, the proposed GAN for Groups 1 and 4 can mostly retain imPCCs above 0.84 and even 

0.95. While for Group 6, imPCC significantly drops below 0.31 when Δt ≥ 10 min (SBP reduces 

to 0.0064). The testing dataset from Group 6 can be regarded to be totally decorrelated from the 

training dataset. 
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Figure 3-4 Retrieved images from speckles with different training durations (T) and 

different time intervals (Δt) between training and testing datasets. (a) Training datasets 

(Group 1, Group 4, and Group 6) are divided according to training dataset durations (T), 

including 10 min, 20 min, and 30 min. The speckle background PCC of testing datasets 
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are marked as red points. (b) T = 30 min, Δt = 1, 5, 10 min. (c) T = 20 min, Δt = 1, 5, 10, 

15, 20 min. (d) T = 10 min, Δt = 1, 5, 10, 15, 20 min. The top row of each column is the 

ground truth image. On other rows, the right columns represent the corresponding 

retrieved images by inputting the speckles in the left columns into the generator in the 

GAN. The numbers under retrieved images are PCCs between the retrieved images and 

the corresponding ground truth images (i.e., imPCC). The ground truth images are 

selected from the Flickr Faces High Quality (FFHQ) database dataset [31]. 

 

3.3.1.2 Quantitative Analysis 

Quantitatively, performances from six groups of experiments (i.e., imPCC) with different time-

varied divisions based on the training data duration T are investigated in Figure 3-5. Generally, 

a larger time interval between training and testing datasets (Δt) corresponds to a lower instant 

SBP as the background speckles change continuously for each group. The influences of imPCCs 

with respect to time intervals and SBP are individually investigated below. 
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Figure 3-5 Average PCC between the retrieved images and the corresponding ground 

truths (imPCC) from speckles with different training durations (T) and different time 

intervals (Δt) between the training datasets and testing datasets: (a-c) imPCC versus 

different time intervals for training dataset duration T = 30, 20, and 10 min, respectively. 

(d-f) imPCC versus different SBP for T = 30, 20, and 10 min, respectively (the curves are 

fitted using a logarithmic function and shown in blue dashed curves). 

 

Temporal generalization of the proposed GAN is revealed in Figure 3-5a, Figure 3-5b, and 

Figure 3-5c. For Groups 1-4 with Final SBPs above 0.3987, the proposed GAN is able to 
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retrieve images from speckles with high fidelity. When Δt ≤ 10 min, for T = 30 min with 15,000 

image-speckle pairs (Figure 3-5a), imPCCs are relatively stable (above 0.8910) and can hardly 

be differentiated. Similar observations can also be discovered in Figure 3-5b (T = 20 min with 

10,000 training samples) and Figure 3-5c (T = 10 min with 5,000 training samples), though 

their overall imPCCs are lower than their counterparts in Figure 3-5a. With larger time intervals, 

i.e., Δt ≥ 10 min, mild descending trends are seen in Figure 3-5b and Figure 3-5c, and imPCCs 

for Groups 3 and 4 decrease more rapidly than those for Groups 1 and 2. For more severely 

decorrelating datasets, i.e., Groups 5 and 6 (Final SBP = 0.0359 and 0.0139, respectively), 

imPCCs drop much more apparently than other groups. 

On the other hand, varying statuses of the scattering medium can be essentially characterized 

by the instant SBP, which describes the extent of decorrelation of the medium. From the 

perspective of SBP, it is interesting to discover that the performance tendencies vary a lot 

compared to the time-interval based plots: imPCCs for six groups are well differentiated with a 

time interval basis in parallel (Figure 3-5a, Figure 3-5b, and Figure 3-5c), but they almost 

collapse into one curve with the SBP basis in series (Figure 3-5d, Figure 3-5e, and Figure 3-5f). 

A clearly increasing tendency can be observed, and imPCC increases dramatically from SBP = 

0 and saturates gradually. Additionally, we fit the curves in Figure 3-5d, Figure 3-5e, and Figure 
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3-5f, as represented by the blue dashed curve. As for T = 30, 20, and 10 min, imPCC becomes 

0.9004, 0.8353, and 0.7315, even if SBP drops to 0.3678 (corresponding to 1/𝑒). This suggests 

that the well-trained GAN is able to adapt to new medium statuses and retrieve images from 

unknown speckles, even when the scattering medium statuses in the testing datasets vary 

considerably from the training datasets. Overall, the generalizability of the trained neural 

network is improved by learning more scattering medium statuses, leading to better retrieved 

image qualities after speckle decorrelation. 

 

3.3.2 Imaging through a Disordered Metasurface 

In the above ground glass-based experiments, the proposed framework can overcome moderate 

decorrelation of the scattering medium, with the longest time interval (Δt) between training and 

testing datasets being up to 30 min. Next, we will test whether the proposed framework is able 

to generalize its ability for even longer periods. A disordered metasurface with random phase 

profiles is used for investigation. The fabrication process of the metasurface involves a 

combination of electron beam lithography (EBL) and reactive ion etching (RIE): 

1. Use electron beam evaporation (EBE) to deposit a thin film (thickness = 600 nm) of TiO2 
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on a smooth glass (SiO2) substrate. 

2. Spin-coat a layer of polymethyl methacrylate (PMMA) onto the TiO2 layer. After EBL, the 

PMMA resist is developed. 

3. Use EBE to deposit a Cr film on the PMMA pattern. Then, wash off the PMMA resist. 

4. Use RIE to selectively remove the TiO2 material to build the desired pattern. 

5. Use chemical etching to remove the Cr mask. 

 

Furthermore, the results of the metasuface experiments are illustrated in Figure 3-6a. As seen, 

although SBP on Day 1 drops down to 0.6 after 3 hours, the overall stability (SBP) fluctuates 

from 0.6 to 0.7 on Day 2, even if the optical system (including the laser source and all electronic 

devices) is shut off for 37 hours. It is worth noting that the network is trained based on the data 

acquired on Day 1, but the proposed framework can still effectively retrieve the face images 

from speckles obtained on Day 2. As shown in Figure 3-6c, the human face features can be 

clearly recognized with all imPCCs above 0.83. As for the results in Figure 3-5d, Figure 3-5e, 

and Figure 3-5f, imPCC highly depends on SBP. This also applies to a non-diffuser and 

decorrelating metasurface. As we can see, with stable SBP on Day 2, the corresponding imPCCs 

in Figure 3-6b remain stable without obvious increasing or decreasing tendency. All this 
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indicates the temporal generalization capability of the proposed framework. 

 

 

Figure 3-6 Metasurface experimental results. (a) SBP (the red solid curves) on Day 1 and 

Day 2, between which the optical system is turned off for 37 hours. The network is trained 

based on the data acquired during the first 3 hours on Day 1, with Final SBP = 0.6369 

(marked in light blue) containing 60,000 speckle-image pairs. The testing dataset is 

acquired on Day 2, with the representative imPCCs at Δt = 37, 38, 39, and 40 hours being 

represented by the green bars. (b) The resultant imPCCs versus SBP in the testing dataset 

(the blue dashed curve is the fitted curve using the logarithmic function). (c) The ground 
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truths, speckles, and the retrieved images. The PCC between each retrieved image and 

the corresponding ground truth is marked under each retrieved image. The average PCC 

and structural similarity index measure (SSIM) between the retrieved image and the 

corresponding ground truth in the testing dataset are marked as imPCC and imSSIM, 

respectively. The ground truth images are selected from the Large-scale CelebFaces 

Attributes (CelebA) Dataset [33]. 

 

3.4 Discussions 

Although the diffuser remains unchanged during each group of data collection, environmental 

perturbations vary across different days and moments, which is a common challenge in optical 

experiments. To address this, we have demonstrated that the proposed framework possesses 

sufficient spatiotemporal generalizability to adapt to scattering medium statuses that are not 

present in the training data. This exciting feature is enabled by training the network with a 

diverse set of statuses from the scattering medium, allowing it to extract the underlying speckle 

features. 

We define the quantified perturbation of a non-stationary scattering medium as the speckle 
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background PCC (SBP). Here, SBP is derived from speckles resulting from loading a uniform 

phase pattern on the SLM and can be used to evaluate the influence of scattering medium 

instabilities. Then, complex and dynamic relations between speckles and images are learned by 

the proposed GAN, which has been compared with other neural networks in Figure 3-7. The 

generator in the proposed GAN extracts inherent features from speckles through complex-

valued convolutions. The complex-valued convolutions mimic the random scattering process 

more accurately as modeled by the transmission matrix theory. Accordingly, the proposed GAN 

performs better than the real-valued GAN in Figure 3-7. Furthermore, the discriminator in the 

proposed GAN evaluates the retrieved images to help the generator further improve outputs, so 

that the retrieved images are continually refined to approach the corresponding ground truth 

image during network training. Accordingly, the proposed GAN performs better than the 

complex-valued U-Net without the discriminator in Figure 3-7. 
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Figure 3-7 Comparisons of different neural networks, including complex-valued 

convolution-based generative adversarial network (Complex GAN), real-valued 

convolution-based generative adversarial network (Real GAN), and complex-valued 

convolution-based deep neural network (Complex UNet). The training datasets used here 

are from Group 1 (Final SBP = 0.8846) with training dataset durations T = 30 min. Time 

intervals between training and testing datasets Δt = 1 min, 5 min, and 10 min. The (a) 

imPCC / (b) imSSIM / (c) imPSNR are average similarities between the retrieved images 

and the corresponding ground truth images in testing datasets. 

 

Notably, after the metasurface experiments (fluctuating SBP on Day 2 in Figure 3-6a), we can 

conclude that the proposed GAN successfully overcomes speckle decorrelation even for a time 

interval Δt > 37 hours (or longer, if needed). To the best of our knowledge, this is the first 

research in speckle imaging of complex objects (e.g., grayscale human face images with 
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detailed features) whose network training and testing are performed on various days with 

significantly different or unpredicted system statuses. This capability opens new venues for 

applications where networks can be trained in advance but maintain their validity for data 

acquired later, regardless of the status of the medium. This is essential for extending the impact 

of the learning-based approaches in the field. 

Additionally, due to its universality across different scattering media (ground glass and 

metasurface in experiments), the proposed GAN can be further extended to imaging or 

information retrieval through living biological tissues. This is long desired yet considered 

highly challenging, as the optical field decorrelates rapidly on the order of milliseconds due to 

physiological motions such as breathing and blood flow [15]. With the proposed framework, 

one can train the network with datasets that cover a relatively long temporal window. This 

allows the network to learn the different statuses of the sample. Consequently, high-fidelity 

information retrieval can be achieved instantaneously by inputting a single speckle captured 

later. 

Furthermore, the performance of the proposed GAN can be improved by incorporating more 

encoded speckle information during the training stage or by adopting an optical neural network 

for faster processing [34]. Retrieved image quality is always challenging, especially when 
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speckles decorrelate significantly from the training data. Including more training speckle 

samples with various scattering medium statuses will generally yield better-retrieved images. 

Additionally, speckle data with a larger region of interest (ROI) includes more speckle grains 

and accesses more encoded information, potentially resulting in better-retrieved images, albeit 

at the cost of longer training time. From another point of view, if the target information is less 

complicated, such as binary digits and letters [35-36], less training data and a lighter network 

structure may reduce the time required for network training and computing resources, as shown 

in Figure 3-8, where digits can be retrieved from speckles with high fidelity, even for T = 10 

min and Δt = 20 min. Moreover, since the distribution of target information encoded in the 

speckle field is spatially redundant, down-sampling [14] or using a partial field of view of the 

speckles [26] could significantly reduce the size of the training data, thereby accelerating the 

learning process of the network. 

These enhancements could improve the prospects of the proposed framework for practical 

applications of speckle imaging, especially with an ultra-stable disordered metasurface as the 

scattering medium. For instance, speckles from different weather conditions can be used to train 

a GAN. The pre-trained GAN can then image through various scattering conditions with 

speckles acquired later, even if the statuses of the scattering medium (i.e., weather conditions) 
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are unknown to the trained network. The spatiotemporal decorrelation generalizability of the 

network could help auto-driving cars perceive their surroundings more accurately in a variety 

of weather conditions. 

 

 

Figure 3-8 Experiments with speckles resulted from digits: (a) imPCC versus different 

time intervals for training dataset duration T = 30, 20, 10 min. (b-d) Retrieved images 

from speckles with different training durations (T) and different time intervals (Δt) 

between training and testing datasets: (b) T = 30 min, Δt = 1, 5, 10 min. (c) T = 20 min, Δt 

= 1, 5, 10, 15, 20 min. (d) T = 10 min, Δt = 1, 5, 10, 15, 20 min. 



91 

 

3.5 Conclusion 

In this chapter, we propose a GAN-based learning framework to non-holographically retrieve 

images from spatiotemporally decorrelated speckles acquired from non-stationary scattering 

media. The extended generalizability of the proposed framework is first demonstrated through 

experiments using ground glass as the scattering medium. Despite the non-stationary nature of 

the scattering medium and the separation of data for network training and testing into different 

periods, the proposed framework successfully retrieves face images from speckles with high 

fidelity. Furthermore, using a disordered metasurface as the scattering medium, the framework 

effectively retrieves images from speckles acquired on the second day of network training, even 

after the optical system has been turned off for 37 hours and then restarted for testing data 

acquisition. These results demonstrate the excellent spatiotemporal decorrelation 

generalizability of the proposed GAN-based framework, enabling high-fidelity retrieval of 

complex information (e.g., human face images) from speckles acquired under varying media or 

system conditions. This capability, allowing for a network to be trained in advance and tested 

with input data acquired later, highlights the impactful potential of learning-based approaches 

in various speckle imaging scenarios, such as non-holographic imaging through biological 

tissues and target sensing in autopilot systems under inclement weather. 



92 

 

References 

1. Yun, S. H., & Kwok, S. J. (2017). Light in diagnosis, therapy and surgery. Nature 

biomedical engineering, 1(1), 0008. 

2. Zhu, L., Soldevila, F., Moretti, C., d’Arco, A., Boniface, A., Shao, X., ... & Gigan, S. (2022). 

Large field-of-view non-invasive imaging through scattering layers using fluctuating 

random illumination. Nature communications, 13(1), 1447. 

3. Luo, Y., Yan, S., Li, H., Lai, P., & Zheng, Y. (2021). Towards smart optical focusing: deep 

learning-empowered dynamic wavefront shaping through nonstationary scattering 

media. Photonics Research, 9(8), B262-B278. 

4. Turtaev, S., Leite, I. T., Altwegg-Boussac, T., Pakan, J. M., Rochefort, N. L., & Čižmár, T. 

(2018). High-fidelity multimode fibre-based endoscopy for deep brain in vivo 

imaging. Light: Science & Applications, 7(1), 92. 

5. Wang, L., Qi, T., Liu, Z., Meng, Y., Li, D., Yan, P., ... & Xiao, Q. (2022). Complex pattern 

transmission through multimode fiber under diverse light sources. APL Photonics, 7(10). 

6. Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7(3), 188-196. 

7. Popoff, S. M., Lerosey, G., Carminati, R., Fink, M., Boccara, A. C., & Gigan, S. (2010). 



93 

 

Measuring the transmission matrix in optics: an approach to the study and control of light 

propagation in disordered media. Physical review letters, 104(10), 100601. 

8. Lee, H., Yoon, S., Loohuis, P., Hong, J. H., Kang, S., & Choi, W. (2022). High-throughput 

volumetric adaptive optical imaging using compressed time-reversal matrix. Light: Science 

& Applications, 11(1), 16. 

9. Tian, L., Hunt, B., Bell, M. A. L., Yi, J., Smith, J. T., Ochoa, M., ... & Durr, N. J. (2021). 

Deep learning in biomedical optics. Lasers in surgery and medicine, 53(6), 748-775. 

10. Turpin, A., Vishniakou, I., & d Seelig, J. (2018). Light scattering control in transmission 

and reflection with neural networks. Optics express, 26(23), 30911-30929. 

11. Doronin, A., & Meglinski, I. (2011). Online object oriented Monte Carlo computational 

tool for the needs of biomedical optics. Biomedical optics express, 2(9), 2461-2469. 

12. Horisaki, R., Takagi, R., & Tanida, J. (2016). Learning-based imaging through scattering 

media. Optics express, 24(13), 13738-13743. 

13. Tang, P., Zheng, K., Yuan, W., Pan, T., Xu, Y., Fu, S., ... & Qin, Y. (2022). Learning to 

transmit images through optical speckle of a multimode fiber with high fidelity. Applied 

physics letters, 121(8). 

14. Li, H., Yu, Z., Zhao, Q., Luo, Y., Cheng, S., Zhong, T., ... & Lai, P. (2023). Learning-based 



94 

 

super-resolution interpolation for sub-Nyquist sampled laser speckles. Photonics 

Research, 11(4), 631-642. 

15. Cheng, S., Li, H., Luo, Y., Zheng, Y., & Lai, P. (2019). Artificial intelligence-assisted light 

control and computational imaging through scattering media. Journal of innovative optical 

health sciences, 12(04), 1930006. 

16. Yu, Z., Li, H., Zhong, T., Park, J. H., Cheng, S., Woo, C. M., ... & Lai, P. (2022). Wavefront 

shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields. The 

Innovation, 3(5). 

17. d’Arco, A., Xia, F., Boniface, A., Dong, J., & Gigan, S. (2022). Physics-based neural 

network for non-invasive control of coherent light in scattering media. Optics 

Express, 30(17), 30845-30856. 

18. Li, Y., Xue, Y., & Tian, L. (2018). Deep speckle correlation: a deep learning approach 

toward scalable imaging through scattering media. Optica, 5(10), 1181-1190. 

19. Zhao, Q., Li, H., Yu, Z., Woo, C. M., Zhong, T., Cheng, S., ... & Lai, P. (2022).  Speckle-

based Optical Cryptosystem and its Application for Human Face Recognition via Deep 

Learning. Advanced Science, 9(25), 2202407. 

20. Caravaca-Aguirre, A. M., & Piestun, R. (2017). Single multimode fiber endoscope. Optics 



95 

 

express, 25(3), 1656-1665. 

21. Vasquez-Lopez, S. A., Turcotte, R., Koren, V., Plöschner, M., Padamsey, Z., Booth, M. J., ... 

& Emptage, N. J. (2018). Subcellular spatial resolution achieved for deep-brain imaging in 

vivo using a minimally invasive multimode fiber. Light: science & applications, 7(1), 110. 

22. Li, H., Woo, C. M., Zhong, T., Yu, Z., Luo, Y., Zheng, Y., ... & Lai, P. (2021). Adaptive 

optical focusing through perturbed scattering media with a dynamic mutation algorithm. 

Photonics Research, 9(2), 202-212. 

23. Wu, G., Sun, Y., Yin, L., Song, Z., & Yu, W. (2023). High-definition image transmission 

through dynamically perturbed multimode fiber by a self-attention based neural network. 

Optics Letters, 48(10), 2764-2767. 

24. Resisi, S., Popoff, S. M., & Bromberg, Y. (2021). Image transmission through a 

dynamically perturbed multimode fiber by deep learning. Laser & Photonics 

Reviews, 15(10), 2000553. 

25. Zheng, S., Wang, H., Dong, S., Wang, F., & Situ, G. (2021). Incoherent imaging through 

highly nonstatic and optically thick turbid media based on neural network. Photonics 

Research, 9(5), B220-B228. 

26. Lyu, M., Wang, H., Li, G., Zheng, S., & Situ, G. (2019). Learning-based lensless imaging 



96 

 

through optically thick scattering media. Advanced Photonics, 1(3), 036002. 

27. Li, Z., Zhou, W., Zhou, Z., Zhang, S., Shi, J., Shen, C., ... & Dai, Q. (2024). Self-supervised 

dynamic learning for long-term high-fidelity image transmission through unstabilized 

diffusive media. Nature Communications, 15(1), 1498. 

28. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & 

Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 

139-144. 

29. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for 

biomedical image segmentation. In Medical image computing and computer-assisted 

intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-

9, 2015, proceedings, part III 18 (pp. 234-241). Springer International Publishing. 

30. Odena, A., Olah, C., & Shlens, J. (2017, July). Conditional image synthesis with auxiliary 

classifier GANs. In International conference on machine learning (pp. 2642-2651). PMLR. 

31. Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative 

adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and 

pattern recognition (pp. 4401-4410). 

32. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & 



97 

 

Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing 

systems, 27. 

33. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes in the Wild. 

In Proceedings of the IEEE international conference on computer vision (pp. 3730-3738). 

34. Li, H., Yu, Z., Zhao, Q., Zhong, T., & Lai, P. (2022). Accelerating deep learning with high 

energy efficiency: from microchip to physical systems. The Innovation, 3(4). 

35. Fan, P., Ruddlesden, M., Wang, Y., Zhao, L., Lu, C., & Su, L. (2021). Learning enabled 

continuous transmission of spatially distributed information through multimode fibers. 

Laser & Photonics Reviews, 15(4), 2000348. 

36. Zhu, C., Chan, E. A., Wang, Y., Peng, W., Guo, R., Zhang, B., ... & Chong, Y. (2021). Image 

reconstruction through a multimode fiber with a simple neural network architecture. 

Scientific reports, 11(1), 896. 

 

  



98 

 

4 DELOCALIZED 

INFORMATION IN OPTICAL 

SPECKLES 

This chapter has been prepared as the following paper and will be submitted for publication: 

Zhao, Q.†, Li, H.†,#, Yu, Z.†, Li, H.†, Cheng, S., Huang, H., Zhong, T., Woo, C. M., Wang, Z., 

Zheng, Y., Liu, H.#, & Lai, P.# (2024). Delocalized information in optical speckles: a learning-

based study. In preparation. 

 

Light travels in a straight line through a homogeneous and transparent medium, resulting in a 

one-to-one information mapping between the object and its image. However, in a scattering 

medium, incident light undergoes multiple scattering events due to wavelength-scale 

inhomogeneities of the refractive index in the medium. Consequently, photons from a single 

point on the object are significantly diffused and spatially delocalized across many different 

regions in the resultant optical field, and vice versa. This dispersal of information leads to a 
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multi-to-multi correspondence, with information being delocalized and presented as speckles. 

As discussed in Chapter 3, significant research efforts have focused on training neural networks 

to extract information from speckles. However, comparatively less attention has been given to 

understanding how information is encoded or delocalized in speckles, and the conditions under 

which high-fidelity information can be retrieved from speckles. This chapter comprehensively 

investigates the phenomenon of information delocalization in speckles. Experimental findings 

reveal that object information is uniformly delocalized among fully developed speckles, 

maintaining consistent information across different regions of interest (ROIs) of the same size 

and ensuring the equivalent fidelity of the retrieved information. Furthermore, it has been 

experimentally confirmed that delocalized information can be retrieved with high fidelity if the 

sampled speckle ROIs contain sufficient information. 

 

4.1 Introduction 

Optical techniques have revolutionized exploration and advancement across various fields [1]. 

These techniques have become indispensable tools for unveiling the intricacies of the physical 

world. Notable examples include confocal microscopes for deep tissue imaging and stimulated 



100 

 

emission depletion microscopes for super-resolution imaging [2-4]. In biomedical applications, 

optical methods are primarily categorized into ballistic and scattering schemes. 

In typical optical imaging applications, ballistic imaging through homogeneous and transparent 

media is the most common scenario. The ballistic scheme involves light traveling in straight 

lines along ballistic paths from the object to the image plane [5]. Each point on the image 

corresponds directly to a point on the object, ensuring clarity in imaging, as shown in Figure 

4-1a [6]. However, when some ballistic light paths are obstructed, crucial information from the 

object cannot reach the image plane or camera, resulting in information loss. In contrast, optical 

imaging through scattering media is dominated by multiply scattered light, as shown in Figure 

4-1b [7-8]. The scattering medium has heterogeneous compositions, leading to variations in 

refractive indices and the propagation of light through processes like refraction, scattering, 

absorption, etc. [9]. As a result, the optical field at any point in a speckle is the superposition of 

fields from different points of the object, with contributions weighted by the transmission 

channels in the scattering medium. Despite obstructions in some transmission channels, photons 

from the same region can still reach the image plane through other channels. This principle in 

scattering underscores the multiple-to-multiple mapping between information and speckles in 

strong scattering schemes, differing significantly from ballistic schemes. 
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To address the challenges posed by scattering schemes, researchers have developed various 

techniques aimed at mitigating optical speckles or retrieving information from speckles, 

including wavefront shaping, transmission matrix, deep neural networks, etc. Recently, the 

integration of optical imaging and deep learning has led to remarkable advancements in the 

field, particularly in the context of speckle imaging [10-11]. Neural networks, with their 

advanced learning capabilities, have been employed to retrieve information from speckles. 

These models, including fully connected layer-based models [12], convolutional layer-based 

models [13], and transformer block-based models [14-16], have showcased their effectiveness 

in extracting features from multiple dimensions and building relations between information and 

speckles. Additionally, by applying physical models (such as transmission matrix and speckle 

autocorrelation) in neural networks, researchers have been able to improve image quality and 

successfully retrieve high-fidelity information from speckles [17-19]. High-level applications, 

such as non-line-of-sight imaging [20-21] and encrypted human face images for face 

recognition [22], have also been achieved, further validating the effectiveness of these neural 

network-based models in the field of speckle imaging. 

Among studies of speckle imaging, researchers have proposed that information is not confined 

to a single ROI in speckles, but is spread across multiple speckle ROIs [23]. This has led to 
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novel research areas such as non-line-of-sight imaging [24] and speckle super-resolution 

imaging [25]. Despite advancements in retrieving information from speckles, the specifics of 

how information is delocalized in speckles and the conditions for ensuring high-fidelity 

information retrieval from speckles still remain unanswered. Understanding delocalization is 

crucial for developing effective methods to retrieve information from speckles, particularly in 

applications where clear, high-resolution images are essential for accurate diagnoses and 

treatments. To the best of our knowledge, this gap in understanding has not been explored, 

highlighting the importance of continued research in this field. 

In this chapter, we focus on investigating how information is delocalized in speckles using 

neural networks. Theoretical analyses of information delocalized in speckles are conducted, and 

the speckle sampling conditions for ensuring high-fidelity information retrieval are explored. 

Experimental results demonstrate that information is uniformly delocalized among speckle 

ROIs with different sizes and locations. Additionally, we perform a quantitative analysis of the 

delocalized information using the concept of entropy, which is a widely adopted measure of 

information [26] and has been introduced to optical research about transmission invariants 

through scattering media [27]. Our findings indicate that if the entropy of speckle 

autocorrelation exceeds that of image autocorrelation, neural networks can be trained to retrieve 
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information from speckles with high fidelity, as evidenced by a Pearson correlation coefficient 

(PCC) greater than 0.9. This novel application of Shannon entropy to speckle analysis provides 

a new perspective on the relationship between speckle and image information. 

Overall, this work contributes to a deeper understanding of information delocalization in 

speckles, which is crucial for advancing speckle imaging applications. By introducing the 

concept of entropy to speckles and discussing the relationship between the entropy of speckle 

autocorrelation and image autocorrelation, this research paves the way for future developments 

in speckle-related research. These findings have the potential to inspire new applications and 

methodologies for biomedical imaging. 
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Figure 4-1 The concept of delocalized information in speckles: (a) Localization of light: 

one-to-one mapping between the object and the image in ballistic light imaging. 

Obstruction results in information loss and low-quality information retrieval.          

(b) Delocalization of speckles: multi-to-multi correspondence in speckle-based imaging. 

Delocalized information in speckles results in high-fidelity information retrieval even in 

the presence of obstruction. Face image: Copyright 2018, Deya at San Antonio Cocktail 

Conference, by Nan Palmero, Flickr (https://www.flickr.com/photos/nanpalmero/ 

38756513965/); the original images are converted to grayscale, under terms of the CC-BY 

2.0 license. 
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4.2 Theoretical Model 

Before experiments, we first analyze the physical models that describe the intricate relations 

between images and the corresponding speckles. The analysis is conducted from two aspects: 

the concept of delocalization and the speckle sampling condition for information retrieval from 

speckles. The former refers to the phenomenon where information is spread out over a large 

area within the field of view of speckles, rather than being confined to a single small region; 

the latter focuses on the speckle sampling condition. 

 

4.2.1 Concept of Delocalization 

The concept of delocalization is first analyzed through the commonly used transmission matrix 

model [28]. In the spatial domain, the incident field 𝐸 and the resultant speckle field 𝑈 are 

modeled as vectors, and the scattering medium is modeled as a transmission matrix 𝑇. As a 

result, the relations between the image information and the corresponding speckles can be 

elaborated through matrix operations, as shown in Equation (4-1): 
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When 𝐸  is multiplied by 𝑇 , the resulting 𝑈  is the result of the combined effect of 

transformations. One element in 𝑈  is related to each individual element in 𝐸 , since each 

element in 𝑈 is a result of the transformation applied to each element in 𝐸. In the context of 

optical scattering, this implies that the transformation applied to the original image results in an 

output field where each element is a combination of all elements in the original image. On the 

other hand, this relationship is not just a one-way process. One element in 𝐸 is also related to 

each element in 𝑈. Therefore, the elements in 𝐸 can still be retrieved from 𝑈 even if some 

elements in 𝑈 are lost. 

The mutual interaction between 𝐸  and 𝑈  exemplifies the core principles of information 

distribution in the optical scattering process. In this process, multiple elements of the image are 

encoded into multiple elements of the speckle, and vice versa. The inherent characteristics of 

matrix multiplication and the properties of linear transformations offer a theoretical basis for 

comprehending the multi-to-multi relationship between images and speckles. This relationship, 

referred to as delocalization in this chapter, describes how information is spread across multiple 
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elements rather than being confined to a single location. 

 

4.2.2 Conditions for High-fidelity Information Retrieval from 

Speckles 

Next, we explore the speckle sampling condition necessary for high-fidelity information 

retrieval from speckles. Information entropy is introduced as a measure to gauge the amount of 

information encoded within speckles, which is crucial for understanding the speckle sampling 

conditions under which images can be retrieved. Entropy (𝐻) plays a critical role in assessing 

this information, as it quantifies the randomness and complexity of the information contained 

in the speckles [29]: 

 𝐻 = −∑𝑃(𝐼) × log[𝑃(𝐼)], (4-2) 

where 𝑃(𝐼) is the probability of digital intensity level 𝐼 (0-255 for 8 bits, or 0-65535 for 16 

bits). Accordingly, higher entropy indicates more information, and lower entropy suggests less 

information. 

From another point of view, the wavefronts are distorted by the scattering medium located at 

the Fourier plane, indicating that the information present at this plane is the Fourier transform 
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of the images, rather than the original images. This distinction is crucial because it means that 

the analysis of information retrieval conditions should not be directly based on the comparison 

of original images and speckles. Instead, the relationship between speckles and images should 

be examined through their autocorrelations [30]. Additionally, according to Wiener-Khinchine 

Theorem, the autocorrelation is the inverse Fourier transform of the power spectrum, indicating 

that the autocorrelation provides insights into the information about the Fourier transform [31]. 

Next, the analysis of information retrieval from speckles involves the relationship between the 

entropy of speckle autocorrelation and the entropy of image autocorrelation. Within the memory 

effect range, the autocorrelation of the speckle is the convolution of the autocorrelation of the 

image with the autocorrelation of the point spread function PSF, as shown in Equation (4-3) 

[30]: 

 𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝑆𝑝𝑒𝑐𝑘𝑙𝑒) = 𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝐼𝑚𝑎𝑔𝑒) ∗ 𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝑃𝑆𝐹). (4-3) 

In other words, the speckle autocorrelation contains information about the image 

autocorrelation and PSF autocorrelation, which allows for the analysis of how information in 

speckles and images are related. Additionally, in common sense, lost information leads to 

reduced entropy and cannot be recovered [32]. In the context of neural networks, pre-training 

to retrieve information from speckles also implies that speckle autocorrelation should contain 
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enough information about the original images. Therefore, we expect that the entropy of speckle 

autocorrelation should exceed the entropy of image autocorrelation to ensure high-fidelity 

information retrieval, i.e., 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦[𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝑆𝑝𝑒𝑐𝑘𝑙𝑒)] > 𝐸𝑛𝑡𝑟𝑜𝑝𝑦[𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝐼𝑚𝑎𝑔𝑒)]. (4-4) 

Note that if the speckle autocorrelation contains less information than the image autocorrelation, 

the pre-trained neural network may still be capable of retrieving information due to the learned 

memory. However, the quality of the retrieved information may be low, and it is likely that the 

recovered information is generated from the training data rather than representing the actual 

information. 

In brief, the entropy analysis involves understanding delocalized information in speckles. The 

proposed speckle sampling condition to ensure high-fidelity information retrieval highlights the 

complexity and intricacy of the relationship between images and speckles. Currently, the 

proposed speckle sampling condition is a necessary condition, rather than a necessary and 

sufficient condition. This means that retrieved information may still not be satisfactory even if 

the speckle sampling condition is met, due to various experimental factors, such as optical 

setups, environmental perturbations, and neural network parameters. In the following sections, 

we will validate the proposed speckle sampling condition. 
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4.3 Methods 

4.3.1 Optical Setup for Dataset Generation and Acquisition 

The optical experiments involve a meticulous process of capturing speckle data from images 

using the optical system shown in Figure 4-2a. The process begins with the use of a continuous-

wave 532 nm laser source (EXLSR-532-300-CDRH, Spectra-Physics, Single mode, 300 mW, 

USA), which is expanded by a 4-f optical system (L1 and L2). The expanded beam fully 

illuminates the spatial light modulator (SLM, HOLOEYE PLUTO VIS056 1080p, German) to 

modulate the optical wavefront, where image intensities are converted into wavefront phase 

delays (0 to 2π). Following this, an objective lens (RMS20X, Olympus, Japan) focuses the 

modulated beam onto a scattering medium (220-grit ground glass, diameter of 1.0 inch, DG10-

220-MD, Thorlabs, USA). On the other side of the medium, optical speckles are generated and 

recorded by a CMOS camera (FL3-U3-32S2M-CS, PointGrey, Canada). Corresponding image-

speckle pairs are stored as data for analysis. During experiments, image data loaded on the SLM 

are 20,000 thumbnails from FFHQ dataset with permission [33]. 
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4.3.2 Neural Networks 

Following the preparation of the speckle dataset, neural networks are trained to explore and 

retrieve delocalized information from speckles. The neural networks, based on a complex 

number-based fully connected layer [25], are designed to effectively handle optical speckles, as 

shown in Figure 4-2b. The loss function (𝐿)  employed during the training of these neural 

networks is a combination of negative Pearson correlation coefficient (PCC), negative structural 

similarity index measure (SSIM), and mean square error (MSE). This combined loss function 

allows for a comprehensive evaluation of the neural network’s performance, balancing overall 

similarity (PCC and SSIM) with pixel-wise similarity (MSE). The empirical parameters (a) and 

(b) are set to 0.8 to optimize the fidelity of image retrieval from speckles: 

 𝐿 = 𝑀𝑆𝐸(𝑦, 𝑦̂) − 𝑎𝑃𝐶𝐶(𝑦, 𝑦̂) − 𝑏𝑆𝑆𝐼𝑀(𝑦, 𝑦̂), (4-5) 

where 𝑦 is the ground truth, and 𝑦̂ is the neural network output. During the network training 

process, 19,800 speckle-image pairs are used for training, and the remaining 200 image-speckle 

pairs are used for testing. The used optimizer is Adam with batch size = 16, and the training is 

conducted over 20 epochs. Initially, the combined loss function 𝐿 in Equation (4-5) is used, 

and in the final 4 epochs, only the MSE loss is used to fine-tune the parameters. This approach 

ensures that the neural network is effectively trained to retrieve information from speckles with 



112 

 

high fidelity. During experiments, we use the same network structures and training parameters 

for fair comparisons between different groups. The framework used for network training and 

testing includes PyTorch 2.0.1, PyTorch Lighting 2.1.3, Python 3.11.4, and CUDA 11.7, running 

on an Nvidia GeForce RTX 3090 GPU. 

 

 

Figure 4-2 (a) The optical setup in experiments: images are loaded on the SLM to 

modulate the wavefront of the incident laser beam (λ = 532 nm), and the resultant speckles 
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are captured by a CMOS camera positioned after the scattering medium. (b) Complex 

fully connected neural network model: one fully connected layer is used to build the neural 

network, with speckles as the input and retrieved information as the output. 

 

4.4 Results 

4.4.1 Information Retrieval without and with Delocalization 

The experiments aim to explore the concept of delocalization, specifically focusing on the 

differences in information retrieval with and without delocalization, which is crucial for 

understanding how delocalization influences the quality of the retrieved information from 

speckles. Here, information is retrieved from partial images (i.e., without delocalization) and 

partial speckles (i.e., with delocalization), respectively. We separately use partial ROIs from 

images (1/4 of full images) and speckles (1/4 of speckles with 256×256 resolution) to train 

neural networks to retrieve the encoded information. The results from two experiments are 

compared in Figure 4-3. 
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Figure 4-3 Comparisons of information retrieval without and with delocalization: (a-c) 

Information retrieval without delocalization: information retrieved from partial images 

and the corresponding information loss. (d-f) Information retrieval with delocalization: 

information retrieved from partial speckles with high fidelity. PCCoverall is the PCC 

between the whole picture of the retrieved information and the corresponding ground 

truth. PCCblock is the PCC between the blocks marked with dotted lines and the 

corresponding ground truth blocks; the PCC between the remained regions and the 

corresponding remained ground truths are given in brackets. Ground truth image (top 
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left): Copyright 2018, DSC_0431, by Aireal Robbins, Flickr (https:// 

www.flickr.com/photos/148747390@N04/41350064164/); the original images are 

converted to grayscale, under terms of the CC-BY 2.0 license; Ground truth image (top 

right): Copyright 2018, 3ª Sessão Ordinária de 2018, by Câmara Municipal de Braganca 

Paulista, Flickr (https://www.flickr.com/photos/camarabraganca/39526445765/); the 

original images are converted to grayscale, under terms of the Public Domain Mark 1.0 

license; Ground truth image (bottom left): Copyright 2018, Deya at San Antonio Cocktail 

Conference, by Nan Palmero, Flickr (https://www.flickr.com/photos/nanpalmero/ 

38756513965/); the original images are converted to grayscale, under terms of the CC-BY 

2.0 license; Ground truth image (bottom right): Copyright 2018, Laurea - Valerio 2, by 

Enrico, Flickr (https://www.flickr.com/photos/onefromrome/275113916/); the original 

images are converted to grayscale, under terms of the CC-BY 2.0 license. 

 

As shown, in traditional imaging without delocalization (Figure 4-3 a-c), light propagates in 

straight lines and the transmission of information is localized. When partial information on the 

received field is lost, information retrieval is challenging, and the quality of the retrieved 

information is significantly lower. This is evident from the low PCCs (just between 0.63 and 
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0.67), indicating that the retrieved information is quite different from the original images. The 

vision perceptions in Figure 4-3c further highlight the limitations, where only the regions 

corresponding to the partial images can be retrieved clearly (PCC > 0.9), and other regions are 

obscure (PCC < 0.6). Additionally, neural networks just average over the ground truth images, 

rather than recover the lost information. As a result, face contours of the retrieved information 

all look similar to each other. For example, the mouth of the young man in Figure 4-3c is open 

although it should be closed, and the eyeglasses of the old and young men cannot be retrieved 

at all. This limitation is attributed to the localization nature of the traditional image transmission. 

In contrast, speckles with delocalization in Figure 4-3 d-f show different behaviors. Even when 

partial speckles are used for information retrieval, the important facial features can be retrieved 

with high fidelity (PCC between 0.94 to 0.95). It suggests that the partial speckles contain 

sufficient information of the entire face image, which allows for the retrieval of detailed and 

recognizable facial features, including cheeks, eyes, hair, expressions, etc. Accordingly, neural 

networks can be used in experiments to validate information delocalization in speckles. 

Another difference between localization and delocalization is that different regions of the 

retrieved information in Figure 4-3f exhibit almost the same fidelity, unlike the various results 

seen in Figure 4-3c. The consistent quality of the retrieved information across different ROIs in 
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speckles further validates the concept of delocalized information. This indicates that the entire 

face image information is evenly distributed across different ROIs in speckles, making it 

possible to retrieve high-fidelity information. 

 

4.4.2 Delocalized Information among Different ROIs 

From the foregoing results, information is distributed across different speckle ROIs, regardless 

of their locations. Next, we will further explore how information is encoded in speckles. We 

crop different sizes of ROIs from speckles with 256×256 pixels and train a set of neural 

networks to retrieve information from these ROIs (i.e., 128×128, 85×85, 64×64, 51×51, 42×42, 

36×36, and 32×32). 

Results from these experiments, presented in Figure 4-4a, show that even when ROIs of varying 

positions and sizes are used, delocalized information can be retrieved from different speckle 

ROIs. This is true despite the fact that PCC between the retrieved information and the 

corresponding images (i.e., retrieved PCC) varies. Notably, the details (including eyes, hair, 

teeth, and facial expressions) in the retrieved information from 256×256, 128×128, and 85×85 

speckle ROIs exhibit satisfying visual results, indicating that speckles contain sufficient human 
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face features. These findings support the proposed theory that information is delocalized among 

speckles, as evidenced by the satisfying similarities between the retrieved information and the 

ground truth. 

Furthermore, for the same ROI sizes, the consistent retrieved PCC further confirms that 

information is evenly delocalized among speckles. By leveraging this delocalized nature, neural 

networks can effectively retrieve detailed and high-fidelity information from speckles. This 

capability is particularly useful in applications involving scattering and speckles, such as 

biomedical imaging and other scenarios where the retrieval of high-fidelity images is crucial. 
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Figure 4-4 (a) Information retrieved from different ROIs within speckles: the first rows 
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are speckles from different ROIs, the second rows are the corresponding speckle 

autocorrelations, and the third rows are the corresponding information retrieved from 

speckles, with retrieved PCC (the PCC between retrieved information and the 

corresponding ground truth) and entropy of speckle autocorrelations marked on retrieved 

information and autocorrelations, respectively. (b) Entropy of speckle autocorrelation and 

corresponding retrieved PCC from different speckle ROI sizes (marked as Speckle ROI). 

(c) Relations between entropy of speckle autocorrelation and retrieved information 

quality (retrieved PCC/PSNR). Ground truth image: Copyright 2018, Deya at San 

Antonio Cocktail Conference, by Nan Palmero, Flickr (https://www.flickr.com/photos/ 

nanpalmero/38756513965/); the original images are converted to grayscale, under terms 

of the CC-BY 2.0 license. 

 

4.4.3 Entropy Relations in Delocalization 

We have already verified the delocalized information in speckles, and will next explore the 

amount of information encoded in speckles. The use of entropy as a measure of uncertainty or 

variability associated with random variables provides a quantitative measure of the amount of 
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information delocalized in speckles. The quantitative analysis of the speckle autocorrelation 

entropy will further validate the proposed speckle sampling condition to retrieve information 

from speckles with high fidelity, which is evidenced by PCC greater than 0.9. 

By comparing speckle autocorrelation and image autocorrelation in Figure 4-4a, the analysis 

reveals distinct differences in the distribution of information. Speckle autocorrelation exhibits 

higher amplitudes in the center regions, corresponding to short-distance correlation, indicating 

that speckle grains decorrelate fast in space. In contrast, image autocorrelation shows more 

information outside the center regions, reflecting the high correlation among different facial 

features. 

Furthermore, the entropy of speckle autocorrelations and the entropy of the corresponding 

ground truth autocorrelations are summarized in Figure 4-4b, and the retrieved PCC is also 

summarized to verify the proposed speckle sampling condition. From the two curves (retrieved 

PCC in the blue solid line, and entropy of speckle in the yellow solid line), it’s clear that 

speckles with larger ROIs include more information, as indicated by higher entropy values. 

Accordingly, speckles with larger ROIs lead to better fidelity in retrieved information, which is 

evidenced by higher retrieved PCC and more detailed structures in visual results. On the 

contrary, as the ROIs in speckles become smaller, the quality of the retrieved information 
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decreases. 

As for speckle ROIs containing 256×256, 128×128 and 85×85 pixels, the entropies of speckle 

autocorrelations are 11.37, 11.79, and 11.37 bits, respectively. These are greater than the entropy 

of the ground truth image autocorrelation (i.e., 10.94 bits), indicating that these speckles contain 

more information than the original images. As shown in Figure 4-4c, the retrieved information 

from speckle ROIs, where the entropy of speckle autocorrelation surpasses the entropy of image 

autocorrelation (yellow dashed line), exhibits high-fidelity information retrieval (PCC > 0.9, 

highlighted by the red dashed line). The corresponding visual results in Figure 4-4a appear 

satisfactory. This observation aligns with the hypothesis that neural networks can be trained to 

transform information distribution from speckles to that of ground truth images and retrieve 

information from speckles with high fidelity, as evidenced by PCC > 0.9. 

Additionally, the analysis of speckle autocorrelation for smaller ROI sizes, such as 64×64 and 

51×51, reveals slightly lower entropy values (10.79 bits and 10.23 bits) than the entropy of 

image autocorrelation, leading to slightly lower PCC for retrieved information. For even smaller 

ROI sizes (42×42, 36×36, 32×32, and 28×28), the entropy of speckle autocorrelation is 

significantly lower than the entropy of the ground truth image autocorrelation. As the obscure 

visual results shown in Figure 4-4a, only common facial features can be retrieved; most specific 
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and personal features are lost. The entropy disparity, along with the low retrieved information 

PCC in Figure 4-4c, indicates that some information is lost in these speckle ROIs and makes it 

challenging to retrieve information with high fidelity. 

 

4.5 Discussions 

Upon examining ROIs of varying sizes and positions, a pronounced distinction emerges 

between traditional imaging (i.e., without delocalization) and speckles (i.e., with delocalization). 

Traditional imaging, characterized by a straightforward mapping from the object to the image, 

encounters significant challenges in retrieving complete information from partial images, as it 

cannot compensate for blocked information. In contrast, speckles demonstrate remarkable 

results across ROIs of various sizes and locations, allowing for the retrieval of information with 

high fidelity. This attribute is primarily due to the inherent delocalization of information in 

speckles, where each point in speckles is correlated with many points in images, as evidenced 

by analyses conducted through the TM model. 

Furthermore, we analyze the relationship between speckle autocorrelation and image 

autocorrelation. We propose that the entropy of speckle autocorrelation should be greater than 



124 

 

that of image autocorrelation, and neural networks can be trained to retrieve information from 

speckles with high fidelity, as evidenced by retrieved information PCC greater than 0.9. This 

suggests that the delocalized information in the captured ROI in the speckle is sufficient to 

encompass information for high-fidelity information retrieval. However, when the speckle 

autocorrelation entropy is much lower than that of image autocorrelation, the quality of the 

retrieved information diminishes significantly. Despite the ability of neural networks to retrieve 

information from speckles, the details are lost, and the retrieved information may not be suitable 

for further applications, such as face recognition. This scenario highlights the critical role of 

speckle autocorrelation entropy in determining the retrievability and the amount of information 

delocalized in speckles. As a result, using entropy as a measure to analyze information 

delocalization in speckles provides valuable insights into the information retrieval from 

speckles. The proposed speckle sampling condition underscores the potential of neural 

networks in speckle imaging for high-fidelity information retrieval. This not only advances the 

understanding of delocalized information in speckles, but also lays the groundwork for future 

research in this area. 
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Figure 4-5 (a) Entropy of speckle autocorrelation and corresponding retrieved PCC from 

different speckle ROI sizes using different neural network models. (b) Relationship 

between entropy of speckle autocorrelation and retrieved information quality (retrieved 
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PCC / PSNR) using different neural network models. (c-d) Reproduction of the same 

experiments in (a-b) with 42×42 ground truth images. (e-f) Reproduction of the same 

experiments in (a-b) with 32×32 ground truth images. 

 

To further verify the proposed speckle sampling condition under various situations, another two 

neural network models (the commonly used U-Net and Vision Transformer) are also tested, 

with results shown in Figure 4-5a and Figure 4-5b. For the U-Net models, the encoder-decoder 

structure is highly efficient in retrieving information from speckles, and the overall retrieved 

information PCC is greater than the results using complex fully connected models. The U-Net 

results (red solid line) almost coincide with the intersection of PCC = 0.9 and entropy of image 

autocorrelation in Figure 4-5b, indicating that the proposed speckle sampling condition fits well 

for the U-Net models. For Vision Transformer models, the overall results (green solid line) are 

near to the U-Net results, and the speckle sampling condition still holds well. Overall, despite 

the differences in the specific results obtained from different neural networks, the overall trends 

are consistent, reinforcing the speckle sampling condition for high-fidelity information retrieval 

from speckles. 

Apart from 64×64 ground truth images with lots of detailed structures, the experiments in 
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Figure 4-5a and Figure 4-5b are further reproduced using 42×42 and 32×32 ground truth images, 

as demonstrated in Figure 4-5 c-f. As for the U-Net (red solid line) and Transformer (green solid 

line) models, the overall results in Figure 4-5 c-f still align with the intersection of PCC = 0.9 

and the entropy of image autocorrelation. This validation supports the proposed speckle 

sampling condition for high-fidelity information retrieval from speckles. 

However, when comparing these findings to those obtained using complex fully connected 

models (blue solid line), we observe a decline in performance for Figure 4-5 c-f. Despite the 

fact that the entropy of speckle autocorrelation exceeds that of image autocorrelation, the 

information retrieval results still fall short of PCC = 0.9 for complex fully connected models. 

The primary reason for this discrepancy lies in the reduced number of model parameters as the 

input and output dimensions decrease, leading to diminished performance in experiments 

involving 42×42 and 32×32 ground truth images. As a result, even when the proposed speckle 

sampling condition is met, the choice of models still significantly influences the retrieved 

information. These results further underscore that the proposed speckle sampling condition is 

necessary but not sufficient, as various factors can influence the retrieved information, such as 

optical setups, environmental disturbances, and neural network models. 

From another point of view, experiments with speckles resulting from digits (i.e., simple targets) 
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demonstrate the versatility of the proposed speckle sampling condition for retrieving various 

types of information from speckles. As shown in Figure 4-6, the Transformer-based networks 

accurately retrieve the shapes and details of the digits. Additionally, when the entropy of speckle 

autocorrelation is greater than that of image autocorrelation, digits retrieved from speckles can 

achieve high-fidelity (i.e., PCC > 0.9). These cross-validations with different network models, 

ground truth resolutions, and targets further underscore the universality of the proposed theory. 

This universality is crucial for advancing the field of speckle imaging, as it suggests that the 

same principles can be applied across a wide range of applications, enhancing the versatility 

and robustness of speckle-based imaging techniques. 
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Figure 4-6 Results of information retrieval from speckles corresponding to digits. (a) 
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Information retrieved from delocalized information in different speckle ROIs. The first 

rows are speckles from different ROIs; the second rows are the corresponding speckle 

autocorrelations; the third rows are the corresponding information retrieved from 

speckles, with retrieved PCC (PCC between retrieved information and the corresponding 

ground truth) and entropy of speckle autocorrelations marked on retrieved information 

and autocorrelations, respectively. (b) Entropy of speckle autocorrelation and 

corresponding retrieved PCC from different Speckle ROIs. (c) Relations between entropy 

of speckle autocorrelation and retrieved information quality (retrieved PCC / PSNR). 

 

Last but not least, the theoretical and experimental findings suggest potential applications for 

speckle imaging, such as non-line-of-sight imaging, where speckle ROIs can be reduced to 

utilize less data for information retrieval behind barriers [24]. Additionally, the findings could 

enable the development of low-cost cameras with high throughput, achieving super-resolution 

through compressive sampled speckles [25]. This approach could also contribute to high-level 

storage security, as information can still be retrieved even if some speckles are lost. Overall, the 

experimental results and the proposed theories provide a solid foundation for understanding 

how information is delocalized in speckles and under what conditions information can be 
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retrieved from speckles with high fidelity. These findings not only contribute to the field of 

speckle imaging but also open up new avenues for future research and application development. 

 

4.6 Conclusion 

The distribution of information in optical speckles has been explored through learning-based 

models. The theoretical models suggest that information is spatially delocalized among speckles. 

By analyzing both physical models and experimental results, the speckle sampling condition 

has been proposed. When the entropy of speckle autocorrelation exceeds that of image 

autocorrelation, neural networks can be trained to retrieve information from speckles with high 

fidelity, as evidenced by PCC greater than 0.9. The entropy relationship between speckle 

autocorrelation and image autocorrelation reveals the speckle sampling condition for 

information retrieval from speckles with high fidelity. Overall, the findings of this work not 

only contribute to the understanding of information delocalization in speckles, but also have 

the potential to inspire new research and applications in speckle-based imaging, computing, 

storage, etc. 
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5 CLASSIFICATION BASED ON 

SPECKLES 

This chapter has been prepared as the following paper and will be submitted for publication: 

Zhao, Q.†, Li, H.†, Yu, Z., Li, H., Cheng, S., Huang, H., Zhong, T., Woo, C. M., Wang, Z., & 

Lai, P.# (2024). Speckle transformer: classification through scattering media with limited 

information. In preparation. 

 

Speckle imaging has garnered significant research interest. However, retrieving images from 

speckles with limited information remains a substantial challenge. As discussed in Chapter 4, 

achieving high-fidelity information retrieval is particularly difficult when the information in 

speckles is insufficient. Accordingly, classification accuracies are expected to be low due to 

blurry retrieved images. To address this issue, we introduce Speckle Transformer, a vision 

transformer-based approach that leverages the limited information in speckles for high-

accuracy classification. By directly extracting features from speckles for classification, this 

method circumvents the need to retrieve original image information before classification. This 
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enables classification based on the inherent features of speckles with limited information, 

achieving higher accuracy than classification after image retrieval. Furthermore, entropy 

analyses highlight the influences of delocalized speckle information on classification accuracies. 

Overall, Speckle Transformer not only overcomes the limitations of traditional methods, but 

also provides a new perspective on classification, opening up new avenues for research and 

application in speckle processing. 

 

5.1 Introduction 

Optical scattering leads to speckles rather than clear images, and it significantly hinders the 

application of optical technologies in deep tissues [1-3]. Recently, retrieving images from 

speckles has gained prominence for its potential in medical diagnoses and characterizing 

biological tissues [4-5]. Among the related research, transmission matrix-based models [6-8] 

and deep learning methods [9-12] have shown great potential for practical applications, due to 

their high efficiency and ease of implementation. However, to retrieve information from 

speckles with high fidelity, these retrieval methods require speckle sampling with sufficient 

information [13-14]. Additionally, speckle resolutions must be higher than those of ground truth 
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images to achieve near-unity fidelity [15]. Furthermore, the increased sampled information 

results in extended processing time for training neural networks or measuring transmission 

matrices, potentially impacting the efficiency of these methods in handling optical speckles. 

Meanwhile, some applications involving retrieved images from speckles, such as classification, 

recognition, and segmentation, may not necessitate very high resolution [16-17]. Additionally, 

achieving high speckle resolutions may be challenging due to hardware limitations, integration 

complexities, cost considerations, etc. [13]. For classification scenarios, only the target type 

information is required, rather than retrieving clear target images. This suggests that direct 

classification of information from low-resolution speckles with limited information is 

applicable [18-19]. Despite these advancements, a significant challenge remains in classifying 

information from speckles, particularly when insufficient sampling prevents the acquisition of 

complete speckle information [14]. 

To address these challenges, we introduce Speckle Transformer, a novel vision transformer-

based model [20-21]. Speckle Transformer is originally designed to classify original images 

with high accuracies to achieve accurate classification based on the limited information 

available in speckles. By circumventing the need for complete speckle data to retrieve images, 

Speckle Transformer enables the classification of images based on the features extracted from 
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speckles, and achieves higher accuracies than traditional methods that rely on image retrieval 

before classification. Furthermore, the amount of information (i.e., information entropy) in 

speckles is analyzed through the derivation of the entropy of speckle autocorrelation, and the 

influences of information in speckles on classification accuracies are discussed. 

 

5.2 Methods 

In this chapter, we integrate the widely recognized transformer model into speckle research, 

offering a novel approach for analyzing and classifying speckles. For the optical experiments, 

the optical setup in Figure 5-1a is utilized to generate speckles [22]. The experiments begin 

with the use of a continuous-wave 532 nm laser source (EXLSR-532-300-CDRH, Spectra-

Physics, Single mode, 300 mW, USA), whose output is expanded by a 4-f system (L1 and L2) 

to illuminate the spatial light modulator (SLM, HOLOEYE PLUTO VIS056 1080p, German). 

Then the images containing digits from Modified National Institute of Standards and 

Technology (MNIST) dataset are displayed on the SLM to modulate the input beam. The 

modulated wavefronts are then focused by an objective lens (RMS20X, Olympus, Japan) and 

pass through a scattering medium (220-grit ground glass, diameter of 1.0 inch, DG10-220-MD, 
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Thorlabs, USA), generating optical speckles. Subsequently, these optical speckles are captured 

by a CMOS camera (FL3-U3-32S2M-CS, PointGrey, Canada), providing a tangible dataset for 

the following experiments. During optical experiments, we captured 20,000 image-speckle 

pairs, which were divided into two groups, with 19,500 pairs for network training and the other 

500 pairs for network testing. 

Following the optical experiments, a transformer-based neural network, i.e., Speckle 

Transformer, as shown in Figure 5-1b, was trained to classify speckles according to the images 

displayed on the SLM. The input speckles are initially partitioned to fit the input requirements 

of Speckle Transformer [20-21]. Given the focus of classification tasks, Speckle Transformer 

primarily consists of a transformer encoder that incorporates multi-head attention (MHA) [23] 

and a multi-layer perceptron (MLP) [24]. The multi-head attention mechanism is instrumental 

in extracting features from speckles, effectively encoding the input speckles into extracted 

features. The extracted features are then utilized by the MLP for classification, yielding speckle 

classification outputs that align with the digits in the ground truth images. Additionally, the 

encoder includes normalization layers and skip connections, and the binary cross entropy 

function 𝐵𝐶𝐸 is utilized as the loss function: 
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 𝐵𝐶𝐸 = −
1

𝑛
∑[𝑦𝑛 × ln 𝑦̂𝑛 + (1 − 𝑦𝑛) × (1 − ln 𝑦̂𝑛)], (5-1) 

where 𝑦 is the ground truth, and 𝑦̂ is the predicted output. 

 

 

Figure 5-1 (a) Schematic of the optical setup: digits are loaded on the SLM to modulate 

the incident wavefront, and a CMOS camera captures the corresponding optical speckles 

after the scattering medium. (b) Speckle Transformer: The inputs are speckles 

corresponding to the images loaded on the SLM. The main block in Speckle Transformer 
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is Transformer Encoder, which includes a multi-head attention (MHA) and a multi-layer 

perceptron (MLP). The output of Speckle Transformer is the classification results 

corresponding to the images loaded on the SLM. 

 

During neural network training and testing, Speckle Transformer was executed on a Dell 

Precision Tower 5810 workstation equipped with Intel Xeon E5-1650 V3 CPU and Nvidia 

GeForce RTX 3090 GPU. The employed software frameworks were PyTorch 2.0.1, CUDA 11.7, 

and Python 3.11.4. Additionally, during network optimization in training, the Adam optimizer 

with batch size = 256 was utilized [25], with a learning rate of 0.0001, complemented by cosine 

annealing to adjust the learning rate dynamically during training. 

 

5.3 Results 

5.3.1 Classification Based on Cropped Speckles and Images 

Speckle Transformer is trained for classifying speckles through the scattering medium. During 

training, the speckle-label pairs were input into Speckle Transformer to tune the parameters. 

During testing, the classification accuracy was used to evaluate the performance of the trained 
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Speckle Transformer, which is defined as the ratio of correct predictions to the total number of 

input speckles [26-27]. 

First, by partitioning the speckles in Figure 5-2c into four distinct blocks, we trained Speckle 

Transformer to classify these speckles and output digits. The testing results, as shown in Figure 

5-2d, reveal that Speckle Transformer can achieve accuracies approaching 90%. This indicates 

that Speckle Transformer can directly classify speckles while bypassing image retrieval, and 

the output results align well with the corresponding digits in the ground truth images. The 

potential of Speckle Transformer offers a promising alternative to traditional image retrieval 

methods by focusing on extracting features directly from speckles themselves, making it a 

valuable tool for speckle-related research and applications. 

In contrast, images are also partitioned into four blocks in the same manner for comparison, as 

shown in Figure 5-2a and Figure 5-2b. When these partitioned images are used for training, the 

same Transformer model encounters difficulties in achieving satisfactory classification 

outcomes, with accuracies hovering around 80%. This is attributed to the loss of information in 

Figure 5-2b, which significantly impacts the model’s ability to classify accurately. Moreover, 

the accuracies across different image ROIs in Figure 5-2b vary significantly. In comparison, the 

accuracies across different speckle ROIs in Figure 5-2d remain consistent, suggesting that 
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information is evenly delocalized among speckle ROIs of the same size. 

 

 

Figure 5-2 Speckle Transformer classification results. (a) Ground truth images are split 

into four sub-ROIs for classification. (b) Classification accuracies correspond to (a). (c) 

Optical speckles corresponding to (a) are also cropped into four sub-ROIs for 

classification. (d) Classification accuracies correspond to (c). 
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5.3.2 Classification Based on Retrieved Images from Speckles 

In the previous experiments, the feasibility of Speckle Transformer for classification based on 

speckles and images has been demonstrated. To highlight the advantages of direct classification 

over classification after retrieval (from speckles to retrieved images), we compare the results of 

classifying speckles directly and classifying images retrieved from speckles (i.e., classification 

after retrieval), as shown in Figure 5-3. The neural network employed for retrieving images 

from speckles is a fully connected layer based on complex algebra, while the network for 

classifying digits utilizes convolutional kernels and is trained on the MNIST dataset. 

For full speckles and speckles divided into four ROIs (1/4 speckles), the results of direct 

classification and classification after retrieval exhibit minimal differences. Additionally, the 

images retrieved from these speckles are of high fidelity, with the PCC between the retrieved 

images and the corresponding ground truth images being greater than 0.9. These results are 

attributed to the fact that speckles contain sufficient information for retrieving digits, resulting 

in high-fidelity retrieved images that are crucial for achieving high accuracies in image-based 

classification. 

However, for speckles with smaller ROIs, including 1/16, 1/64, 1/256, and 1/1024 of the full 

speckles, direct classification apparently outperforms classification after retrieval. Notably, for 
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1/1024 of full speckles, the accuracy of classification after retrieval is only slightly above 10%, 

suggesting that the classifier just produces some random results, and the retrieved images are 

actually not classifiable. These outcomes are due to the limited information available in smaller 

speckles for retrieving high-fidelity images. Furthermore, the loss function used for retrieving 

digits from speckles focuses on overall image similarity, which may not effectively capture key 

points in digits necessary for high-accuracy classification. Consequently, the retrieved images 

are of low quality and difficult to classify, leading to lower accuracies in subsequent image-

based classification tasks. 

 

 

Figure 5-3 Direct speckle classification vs. classification after image retrieval: The first 

row is for direct classification based on speckles, including speckles from different ROIs. 
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The corresponding classification accuracies are marked on speckles. The second row is 

classification based on retrieved images from the corresponding speckles. The similarities 

between retrieved images and ground truths (i.e., Pearson correlation coefficients, PCC) 

and the corresponding classification accuracies of the retrieved images (i.e., classification 

after retrieval) are marked on each retrieved image. 

 

5.3.3 Comparisons 

The comparison results in Figure 5-3 are further elaborated in Figure 5-4. The curves in Figure 

5-4a clearly illustrate that as the sizes of speckle ROIs decrease, Speckle Transformer (i.e., 

direct classification) consistently outperforms its counterparts (i.e., classification after retrieval). 

Moreover, when comparing different speckle ROIs of the same size, small variations (i.e., 

shadows of the curves) in the results of Speckle Transformer are observed. The same minor 

variations are also observed in classification after retrieval. These findings underscore the 

uniform distribution of information across different speckle ROIs of the same size. 

Conversely, when classifying based on digit images (no speckles are involved), the results in 

Figure 5-4b vary significantly across different ROIs of the same size, regardless of whether 
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direct classification (based on cropped images) or classification after retrieval (based on 

retrieved images) is employed. This discrepancy is attributed to the fact that each ROI contains 

only a portion of digit information, leading to low accuracies in the classification outcomes. 

These results highlight the distinct advantages of Speckle Transformer in classification, 

particularly in scenarios where limited information is encoded or recorded in speckles. 

 

Figure 5-4 Experimental results of direct classification and classification after retrieval: 

(a) Classification based on cropped speckles of different ROIs (i.e., direct classification) 

and classification based on images retrieved from speckles of different ROIs (i.e., 

classification after retrieval). (b) Classification based on cropped images of different ROIs 

(i.e., direct classification) and classification based on images retrieved from cropped 

images of different ROIs (i.e., classification after retrieval). 



150 

 

5.4 Discussions 

In this chapter, we introduce Speckle Transformer, an approach designed for direct 

classification of speckles without the need to retrieve images from speckles. Our experiments 

demonstrate that direct classification based on speckles, facilitated by Speckle Transformer, 

outperforms classification after information retrieval, especially when there is limited 

information in the speckles. 

From a different perspective, we have previously mentioned that smaller speckle ROIs contain 

insufficient information for retrieving digits with high fidelity. To quantify the amount of 

information in different speckle ROIs, we employ information entropy to analyze speckle 

autocorrelation. The speckle autocorrelation is derived according to Wiener-Khinchin theorem, 

which states that autocorrelation is the inverse Fourier transform of the power spectrum [28]. 

We choose autocorrelation because the input wavefront in optical experiments is distorted in 

the Fourier plane, and autocorrelation contains information about the Fourier transform. We 

then compare the entropy of speckle autocorrelation with the entropy of image autocorrelation, 

as depicted in Figure 5-5. 

The entropy of ground truth image autocorrelation is 8.84 bits. For full speckles, the entropy of 

speckle autocorrelation is 13.71 bits, surpassing the entropy of image autocorrelation. This 
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indicates that the information encoded in speckles is sufficient, which facilitates high-accuracy 

digit classification. Similarly, for 1/4 speckles and 1/16 speckles, the entropies of speckle 

autocorrelation are 12.64 bits and 10.95 bits, respectively, both exceeding the entropy of image 

autocorrelation. Consequently, the overall classification accuracies are acceptable due to the 

ample information encoded in speckles. For 1/64 speckles, the entropy of speckle 

autocorrelation (9.00 bits) is only slightly higher than the entropy of image autocorrelation (8.84 

bits). The information encoded in 1/64 speckles is just sufficient, leading to classification 

accuracies slightly lower than 90%. However, for 1/256 speckles and 1/1024 speckles, the 

encoded information is significantly reduced, resulting in much lower classification accuracies 

(about 80% and 60%, respectively). 

Overall, the entropy of speckle autocorrelation can serve as a critical parameter for evaluating 

information in speckles and has the potential for classification with high accuracy. These 

findings underscore the importance of considering the entropy of speckle autocorrelation in 

speckle-related scenarios. Furthermore, this knowledge is crucial for advancing speckle-related 

research and applications, ensuring that the full potential of information in speckles is harnessed. 
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Figure 5-5 Entropy of different speckle ROIs: Speckles (including full speckle, 1/4 speckle, 

1/16 speckle, 1/64 speckle, 1/256 speckle, 1/1024 speckle, and 1/4096 speckle) are shown in 

the left columns. The corresponding speckle autocorrelations are shown in the right 

columns. The speckle classification accuracies and entropies of speckle autocorrelation 

are marked on speckles and autocorrelations, respectively. 
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5.5 Conclusions 

In this chapter, we propose Speckle Transformer to facilitate information classification based 

on speckles directly. The experimental findings indicate that direct classification, enabled by 

Speckle Transformer, can achieve higher accuracies compared to classification after image 

retrieval, particularly in scenarios where speckles contain insufficient information for high-

fidelity image retrieval. Furthermore, entropy analyses highlight the influences of limited 

speckle information on classification accuracies. Overall, Speckle Transformer offers a 

promising alternative to traditional techniques, circumventing the need for complete speckle 

data to retrieve images and leveraging the inherent features of optical speckles for direct 

classification. In the future, Speckle Transformer holds significant potential for application to 

non-line-of-sight classifications and privacy-protected classifications. 
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6 SPECKLE-BASED OPTICAL 

CRYPTOSYSTEM 

This chapter is modified based on a published paper in a peer-reviewed journal: 

Zhao, Q.†, Li, H.†, Yu, Z.†, Woo, C. M., Zhong, T., Cheng, S., Zheng, Y., Liu, H., Tian, J.#, & 

Lai, P.# (2022). Speckle-based optical cryptosystem and its application for human face 

recognition via deep learning. Advanced Science, 9(25), 2202407.« 

 

In the preceding chapters, we focused on overcoming, understanding, and interpreting optical 

speckles. However, from a different perspective, the inherent randomness of speckles makes 

them ideal candidates for use as ciphertexts in cryptosystems. Recently, face recognition has 

become ubiquitous for authentication or security purposes. Concurrently, concerns about the 

privacy of face images, which are sensitive biometric data, have increased. While software-

based cryptosystems are widely adopted to encrypt face images, their security is often limited 

by insufficient digital secret key length or computing power. In contrast, hardware-based optical 

cryptosystems can generate enormously longer secret keys and enable encryption at the speed 
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of light. However, most reported optical methods, such as double random phase encryption, are 

less compatible with other systems due to system complexity. 

In this chapter, we propose and implement a plain yet highly efficient speckle-based optical 

cryptosystem. We utilize a scattering ground glass to generate speckles that supports physical 

secret keys of 17.2 gigabit length, enabling the encryption of face images through seemingly 

random optical speckles at light speed. These encrypted face images can then be decrypted from 

the random speckles by a well-trained decryption neural network, achieving face recognition 

with up to 98% accuracy. 

 

6.1 Introduction 

The human face is a personal identifier, and an adult can hardly change the appearance. In 

modern society, numerous face recognition scenes have been set up for authentication or 

security purposes, due to the increasing concern for personal privacy and public safety [1]. The 

storage of human face data is therefore highly confidential. If the face database is leaked, 

hackers may use this information to attack key sectors, including bank accounts [2]. Therefore, 

effective protection of face image data is essential for privacy and security [3]. 
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Various cryptosystems, including software-based and hardware-based, have been put forward 

to protect private data. For software-based cryptosystems, well-known encryption algorithms 

have been developed, such as Rivest-Shamir-Adleman encryption (RSA) [4], Advanced 

Encryption Standards (AES) [5], Message Digest Algorithm (MD5) [6], etc. These algorithms 

are all based on mathematical theories, whose digital secret key lengths range from tens to 

hundreds of bits. The selection of the secret key lengths involves a trade-off or balance between 

security level and processing speed. Such a limited key length seems to be sufficiently secure 

for conventional attacks by general computers, but is vulnerable to attacks by the rapidly 

evolving quantum computers, whose computing power is 108 times that of the general ones [7]. 

As a result, researchers keep exploiting novel cryptosystems to achieve higher security, and 

hardware-based solutions are therefore in demand. 

Amongst current hardware-based solutions, speckle-based cryptosystems are of extensive 

interest with the development of optical computing and computational imaging [8-9], due to 

their superior performance, such as fast speed, high security, low cost, etc. [10] In speckle-

based cryptosystems, optical speckles are utilized as ciphertext to encrypt plaintext. The random 

feature of the speckles seems meaningless and is usually annoying, but speckles constitute 

nearly infinite information channels, leading to the tremendously long physical secret key 
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length in a cryptosystem [11]. Accordingly, speckles can be exploited to yield high-level 

security and information protection. Thus far, a few methods, such as transmission matrix, 

support vector regression, deep neural networks, etc., have been developed to retrieve images 

from speckles [11-13]. Among these approaches, neural networks can automatically learn the 

complex relations between the plaintext and the ciphertext, resulting in image retrieval with 

higher fidelity than other methods [14-19]. Since the physical models in speckle-based optical 

cryptosystems are similar to those for imaging through scattering media, neural networks can 

also be applied in speckle-based optical cryptosystems to decrypt speckles for high-level 

applications, such as face recognition. The main challenge here is to decrypt images from 

rapidly changing optical speckles and to recognize faces in the decrypted images. Moreover, to 

achieve high accuracy in face recognition, decryption with high fidelity in key features and 

detailed structures is required. In this chapter, we propose a scheme that utilizes optical speckles 

for face image encryption and a deep neural network for speckle decryption, and the decrypted 

images are then used for face recognition. 

The concept, as illustrated in Figure 6-1, can be decomposed into three stages: first, face images 

are optically scrambled into speckles for encryption, which protects the data during 

transmission and storage; then, a neural network is trained to decrypt the face images with high 
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fidelity from the ciphertext (i.e., speckles); last, the decrypted images are compared with the 

known face encodings for recognition. In the cryptosystem, face images are encrypted into 

seemingly random speckles that are nearly impossible to be decrypted without the knowledge 

of the physical key (i.e., the scattering medium) or the learned digital key (i.e., the trained neural 

network). Moreover, only speckles but no face images are stored in the database to avoid any 

potential private information leakage. To the best of our knowledge, this is the first 

demonstration of a speckle-based optical cryptosystem for face recognition, and the accuracy 

has reached more than 98%, which is applicable in a wide range of applications. 

 

 

Figure 6-1 The flowchart of the proposed cryptosystem for face recognition. (a) Speckle 
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encryption: face images (plaintext) are loaded on a spatial light modulator (SLM) to 

generate the corresponding speckles (ciphertext) when coherent light is reflected by the 

SLM and transmits through a scattering medium. The ciphertext is safely transferred and 

stored via the cloud, and no face images need to be kept in the database after encryption. 

(b) Learning-based decryption: a neural network is trained in advance to link the 

plaintext with the ciphertext. After training, new random speckles (ciphertext) are directly 

fed into the neural network for decryption, and the decrypted face images are then utilized 

for face recognition. (c) Face recognition: the camera-recorded face images are encoded 

to unique 128-dimensional vectors of each known face image. After decryption, the face 

encoding distances between the decrypted images and the known face encodings are 

computed. If the encoding distance is less than a pre-set threshold, the face recognition 

result is Match (the same person), otherwise, it is Mismatch (different people). Plaintext 

image: Reproduced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence 

Lessig at Second Home London, by Innotech Summit, Flickr (https://www.flickr.com/ 

photos/115363358@N03/18260388752/). The original image is cropped and converted to 

grayscale. 
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6.2 Results 

6.2.1 Speckle-based Encryption 

Figure 6-2 shows the experimental optical setup for information encryption. Face images with 

a resolution of 128×128 from the thumbnails of the Flickr Faces High Quality (FFHQ) database 

[21] are displayed on a phase-modulating spatial light modulator (SLM, HOLOEYE PLUTO 

VIS056 1080p, German) to modulate the incident coherent light from a 532 nm single mode 

laser source (300 mW, EXLSR-532-300-CDRH, Spectra-Physics, USA). Thus, the information 

of the face images (i.e., plaintext) is carried by the wavefront modulated laser beam. Then, the 

modulated wavefront is focused by an objective lens (RMS20X, Olympus, Japan) onto and 

passes through a scattering medium (220-grit ground glass, diameter of 1.0 inch, DG10-220-

MD, Thorlabs, USA). Accordingly, the wavefront is multiply scattered to form random speckles 

(i.e., ciphertext), which are captured by a digital camera (FL3-U3-32S2M-CS, PointGrey, 

Canada) with a resolution of 256×256. During encryption, which is the process of generating 

speckles, a MATLAB program synchronizes all devices to ensure each captured speckle (i.e., 

ciphertext) is paired with one exclusive face image (i.e., plaintext) displayed on the SLM. As 

seen, the ciphertext appears random and exhibits no direct relationship with the plaintext, and 

the mean Pearson correlation coefficient (PCC) between them is as low as 0.02. 
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Figure 6-2 The optical setup for encryption. Face images (plaintext) are displayed on the 

SLM, generating speckles (ciphertext) through a scattering medium. The speckles are 

recorded by a CMOS camera, which is synchronized by a Matlab program to ensure one-

to-one mapping with the displayed face image for network training. Plaintext image: 

Reproduced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig at 

Second Home London, by Innotech Summit, Flickr (https://www.flickr.com/photos/ 

115363358@N03/18260388752/). The original image is cropped and converted to grayscale. 
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6.2.2 Learning-based Decryption 

For information decryption from speckles, a neural network is constructed first. The structure 

of the neural network is shown in Figure 6-3a, which is a U-Net [22] concatenated with a 

complex fully connected layer [15] and a normalization layer. The encoders in the U-Net 

contained 4 down-sampling blocks, and the decoders in the U-Net contained 4 up-sampling 

blocks. In addition, the fully connected layer was based on complex numbers. In Figure 6-3a, 

the blue arrows and filters represented the encoders in the U-Net, and the orange arrows and 

filters represented the decoders in the U-Net. The encoder tended to extract low-dimensional 

features from the speckles and encode them, and the decoder then tended to extract high-

dimensional features and decode them [22]. As a result, the encoder and decoder neural network 

could extract features of different dimensions. The fully connected layer was used as the last 

layer to transform the extracted features into images. The normalization layer limited the output 

range to [0,1]. At last, the final output was the face images decrypted from random speckles. 

During network training, the speckles used as the network input were 256×256 speckle images 

captured by the CMOS camera, and the images used as the network output were 64×64 images 

that were down-sampled from the FFHQ dataset (128×128) to avoid using up the GPU memory 

[21]. These resolutions were chosen to make full use of the experimental setup and achieve 
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high-fidelity image decryption. Before the speckle data was input to the neural network, the 

input data were linearly normalized to [0,1] for better neural network performance [23]. Then 

the neural network is trained with 19,800 pairs of face images and their corresponding speckles. 

Additionally, the loss function 𝐿 used for training the neural network is: 

 𝐿 = 𝑀𝑆𝐸(𝑦, 𝑦̂) − 𝑃𝐶𝐶(𝑦, 𝑦̂) (6-1) 

 𝑃𝐶𝐶 =  
𝑚𝑒𝑎𝑛[(𝑦 − 𝑚𝑒𝑎𝑛 (𝑦)) × (𝑦̂ − 𝑚𝑒𝑎𝑛 (𝑦̂))]

𝑠𝑡𝑑 (𝑦) × 𝑠𝑡𝑑 (𝑦̂)
 (6-2) 

 𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛 [(𝑦̂ − 𝑦)2] (6-3) 

where 𝑦 is the ground truth, and 𝑦̂ is the predicted output from the neural network. Here, we 

adopt PCC to measure the overall similarity and mean square error (MSE) to measure the pixel-

wise error. The optimizer used in training the neural network was stochastic gradient descent 

(SGD) [24] with batch size = 3, and the learning rate was 0.15 with cosine annealing. During 

the experiments, the neural network was trained for 30 epochs, and the neural network was then 

tested. The software framework used was Pytorch 1.8.0 with Python 3.7.6 and Compute Unified 

Device Architecture (CUDA) 10.1 for GPU acceleration. The hardware used was Dell Precision 

Tower 5810 with Intel Xeon E5-1650 V3 CPU, 64 GB RAM, and Nvidia GeForce RTX 2080Ti 

11GB GPU. During the training, one epoch took about 30 min, and the whole training process 
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takes about 15 h. 

The experimental results of the neural network are shown in Figure 6-3b. Apart from PCC, we 

also measure other commonly used criteria, including the peak signal to noise ratio (PSNR) and 

the structural similarity index measure (SSIM), respectively. In Figure 6-3b, four groups of 

exampled plaintexts, ciphertexts, and decrypted images during network testing are shown. The 

PCC, MSE, SSIM, and PSNR between the decrypted images and the original plaintexts are 

marked under the decrypted images. Overall, the average PCC, MSE, SSIM, and PSNR among 

all the testing data with 100 image-speckle pairs are 0.9422, 0.0083, 0.6884, and 21.25, 

respectively, demonstrating high accuracy of information decryption, which is essential for face 

recognition in the next stage. After network training, the plaintexts can be deleted from the 

cryptosystem to avoid privacy data leakage. 
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Figure 6-3 Neural network structure and the decryption performance. (a) Architectures 

of the neural network based on U-Net with an additional layer of a complex fully 

connected layer and normalization layer. The U-Net mainly contains 4 layers, with 4 

down-sampling blocks for encoders (marked in blue) and 4 up-sampling blocks for 
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decoders (marked in orange) [22]. The final outputs are face images decrypted from 

speckles, which are then used for face recognition. The dimensions of the filters are 

described as length × height × amount, and the filters shown here are visualized by 

inputting one speckle into the neural network. (b) Four groups of exampled plaintexts, 

ciphertexts, and decrypted plaintext images during network testing. The ciphertexts are 

all from the same scattering medium, and the decrypted plaintext images are the results 

of inputting ciphertexts to the pre-trained neural network for decryption. The PCC, MSE, 

SSIM, and PSNR between the decrypted and original images are marked under the 

corresponding decrypted images. Plaintext image I: Reproduced under terms of the CC-

BY 2.0 license. Copyright 2015, Lawrence Lessig at Second Home London, by Innotech 

Summit, Flickr (https://www.flickr.com/photos/115363358@N03/18260388752/). Plaintext 

image II: Reproduced under terms of the Public Domain Mark 1.0 license. Copyright 2018, 

kỉ yếu 12c, by khanhkhokhao201, Flickr (https://www.flickr.com/photos/ 

154663983@N08/28538465128/). Plaintext image III: Reproduced under terms of the 

Public Domain Mark 1.0 license. Copyright 2016, Future Leaders of the Pacific 2016 by 

US Embassy, Flickr (https://www.flickr.com/photos/us_embassy_newzealand/ 

29355772191/). Plaintext image IV: Reproduced under terms of the CC-BY 2.0 license. 
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Copyright 2018, Ekaterina by Wonder Woman, Flickr (https://www.flickr.com/photos/ 

zamerzla/28685633938/). The original images were cropped and converted to grayscale. 

 

Besides, the noise-resisting ability of the network is examined since noise always exists in 

experiments due to environmental disturbances, vibration, airflow, et al. [16]. Here, some 

computer-generated Gaussian noises with different standard deviations [25] are added to the 

speckles for testing, and the decryption performance is updated with the pre-trained neural 

network. The results are given in Figure 6-4a, where the quality of the decrypted images 

deteriorates considerably when the standard deviation of the noise is greater than or equal to 

0.5 (i.e., the noise amplitude is half of the mean of the signal amplitude), and the face outline 

becomes indistinct. These results suggest that the neural network can handle low and moderate 

noise conditions to the testing data, which is meaningful to the applicability of the method. 



173 

 

 

Figure 6-4 (a) Decryption performance with noisy speckles: the speckles with computer-
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generated random noise are fed into the pre-trained neural network for decryption. The 

noisy speckles and the corresponding decrypted images are marked with the 

corresponding noise standard deviation (SD) and similarity criteria, respectively. (b) 

Decryption performance with partial speckles: only the top left corners (i.e., quarter field 

of view, marked in red box) of the speckles are used to train and test the neural network. 

The plaintext image I-IV: Reproduced under terms of the CC-BY 2.0 license. Copyright 

2015, Lawrence Lessig at Second Home London, by Innotech Summit, Flickr 

(https://www.flickr.com/photos/115363358@N03/18260388752/). The plaintext image I: 

Reproduced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig at 

Second Home London, by Innotech Summit, Flickr (https://www.flickr.com/photos/ 

115363358@N03/18260388752/). The plaintext image II: Reproduced under terms of the 

Public Domain Mark 1.0 license. Copyright 2018, kỉ yếu 12c, by khanhkhokhao201, Flickr 

(https://www.flickr.com/photos/154663983@N08/28538465128/). The plaintext image III: 

Reproduced under terms of the Public Domain Mark 1.0 license. Copyright 2016, Future 

Leaders of the Pacific 2016 by US Embassy, Flickr (https://www.flickr.com/photos/ 

us_embassy_newzealand/29355772191/). The plaintext image IV: Reproduced under 

terms of the CC-BY 2.0 license. Copyright 2018, Ekaterina by Wonder Woman, Flickr 
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(https://www.flickr.com/photos/zamerzla/ 28685633938/). The original images were 

cropped and converted to grayscale. 

 

Furthermore, due to multiple light scattering and the conceptualized infinite information 

channels [26] within the scattering medium, it is hypothesized that the information in the 

plaintext is scrambled and distributed to the whole speckle. Spatially, this speckle could be large 

in practice, especially if the incident light is focused on the front sample surface or the detection 

plane is far away from the sample. It is thus possible that only part of the speckle is captured 

by the detection camera in experiments [27]. To study whether this factor may affect the 

performance, an additional group of experiments is conducted by using a quarter region of 

interest (ROI) of the speckles for network training and testing. That is, the dimension of the 

speckles is reduced from 256×256 to 128×128 under the same spatial sampling condition. The 

experimental results are shown in Figure 6-4b. As seen, partial ROI leads to decryption results 

(Figure 6-4b) that are very comparable to those obtained with a larger ROI (Figure 6-3b), 

confirming the hypothesis above. Such a non-point-to-point information mapping between the 

plaintext and the ciphertext is distinctive to most existing cryptosystems. It allows smaller 

speckle ROIs to be adopted in network training and testing, which can relieve the burdens of 
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data collection, storage, and processing. 

 

6.2.3 Face Recognition 

During decryption, we utilize PCC and other criteria to test similarities. However, these criteria 

are not suitable for face recognition as they may be affected by many factors other than face 

features, such as backgrounds, orientations, and expressions of faces [28]. Therefore, the 

original and decrypted face images are further processed with an open-source Python face-

recognition library [29]. The neural network used for face recognition is based on ResNet [30], 

which is well-trained based on 3 million faces and has 99.38% accuracy on the Labeled Faces 

in the Wild benchmark [31-32]. The face recognition network encodes each face image with a 

unique 128-dimensional vector, which extracts the specific features of human faces, including 

eyebrows, eyes, noses, mouths, and cheeks (as illustrated in Figure 6-5 a-b). If the Euclidean 

distance [33] between two face vectors is lower than a pre-set threshold, two corresponding 

faces are defined as Match with each other; otherwise, they are defined as Mismatch, as 

exampled in Figure 6-5c. The commonly used pre-set threshold is 0.6 (for general situations) 

or 0.5 (for higher security scenes). 
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Figure 6-5 Face recognition results based on face images from FFHQ and the 

corresponding decrypted images from speckles. (a) The original face images (i.e., plaintext) 
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and their key features for face recognition. (b) The decrypted face images by feeding 

speckles into the trained neural network and their key features. The face encoding 

distances between the decrypted and original face images with a threshold = 0.6 are 

marked under the decrypted images. (c) Face encoding distances between the decrypted 

and original images in the testing dataset. If the distance is less than or equal to the 

threshold = 0.6, the recognition result is Match; otherwise, it is Mismatch. (d) The face 

recognition results of the decrypted images. True positives are marked in red, true 

negatives are marked in blue, while false positives and false negatives are marked in black. 

The first-row plaintext image I: Reproduced under terms of the CC-BY 2.0 license. 

Copyright 2015, Lawrence Lessig at Second Home London, by Innotech Summit, Flickr 

(https://www.flickr.com/photos/115363358@N03/18260388752/). The first-row plaintext 

image II: Reproduced under terms of the Public Domain Mark 1.0 license. Copyright 2018, 

kỉ yếu 12c, by khanhkhokhao201, Flickr (https://www.flickr.com/photos/ 

154663983@N08/28538465128/). The first-row plaintext image III: Reproduced under 

terms of the Public Domain Mark 1.0 license. Copyright 2016, Future Leaders of the 

Pacific 2016 by US Embassy, Flickr (https://www.flickr.com/photos/ 

us_embassy_newzealand/29355772191/). First-row plaintext image IV: Reproduced under 
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terms of the CC-BY 2.0 license. Copyright 2018, Ekaterina by Wonder Woman, Flickr 

(https://www.flickr.com/photos/zamerzla/28685633938/). The original images were 

cropped and converted to grayscale. 

 

Before recognizing the decrypted face images from the trained neural network, some images 

with sunglasses and babies were excluded since some of their facial key points were ambiguous. 

Then, the target is that if the Euclidean distances between the encoding vectors of two original 

images are smaller than the preset threshold (indicating that they are the same person), the 

distances between the two corresponding decrypted images are also expected to be smaller than 

the preset threshold, indicating that the people in the decrypted images and the original images 

match. The encodings of the decrypted images were also compared with each encoding of the 

original images. If the two original images’ encoding distances were smaller than the preset 

threshold, the two samples were treated as positive samples. If the corresponding two decrypted 

images’ encoding distances are also smaller than the preset threshold, the results are true 

positives, otherwise, they are false negatives. On the contrary, if the two original images’ 

encoding distances are larger than the preset threshold, the two samples are treated as negative 

samples. If the corresponding two decrypted images’ encoding distances are also larger than the 
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preset threshold, the results are true negatives; otherwise, they are false positives. During 

network testing, recall, precision, accuracy, and F1-score were used to test the performance, as 

defined in Equation (6-4), Equation (6-5), Equation (6-6), and Equation (6-7), respectively. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =    
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (6-4) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (6-5) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 
(6-6) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (6-7) 

As one person might be recognized as two different people, while two different people should 

not be recognized as the same person, accuracy is more meaningful than the other three criteria. 

Accordingly, in the experiments to test the proposed cryptosystem, various thresholds between 

0.5 and 0.6 are tested with decrypted face images. As an example, the results of face recognition 

with a threshold distance of 0.6 are shown in Figure 6-5. The key features of the original and 

decrypted face images are extracted by the face recognition neural network and marked in the 

second row of Figure 6-5a and Figure 6-5b, respectively [29]. As seen, most of these decrypted 

images appear akin to their corresponding original plaintext images (e.g., image pairs I-V, II-

VI, and III-VII, whose PCC are all more than 0.94) and hence are recognized as Match. Note 
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that, however, some image pairs seem visually alike, such as IV-VIII whose PCC ≈ 0.96, but 

are still recognized as Mismatch since the distance is 0.61, being above the threshold of 0.6. 

Nevertheless, it shows that the face recognition library can extract key features and scale the 

differences between decrypted and original face images. 

Furthermore, we test the accuracy of face recognition. The 128-dimension face encodings from 

the decrypted images are compared with the corresponding encodings from the original face 

images, as shown in Figure 6-5d. The results with different distance thresholds are shown in 

Table 6-1 and compared with other face recognition algorithms [34-38]. It is not surprising that 

different thresholds result in different recalls, precisions, and accuracies. It can be observed that 

our accuracy reaches greater than 98% when the threshold is below 0.58. Compared with 

FaceNet and VGGFace, the method proposed in this chapter has higher accuracy and is 

therefore more suitable for practical applications [35-36]. Moreover, the precision is 100% 

when the threshold is set at 0.5, indicating high confidence during face recognition. However, 

the recall and the F1 score are not as good as those from FaceNet and VGGFace, which can be 

attributed to the fact that there are more negative samples than positive samples in the data we 

use. The performance can be further improved by adjusting the threshold in face recognition 

according to the sample distribution in the dataset, or tuning the structure or the parameters of 
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the neural network. 

 

Table 6-1 Face recognition results by our method and other algorithms with optimal 

thresholds. 

 Threshold Recall Precision Accuracy F1 score 

This work 

0.60 66.18% 64.02% 97.87% 65.08% 

0.58 62.73% 69.66% 98.49% 66.01% 

0.56 61.65% 78.10% 98.93% 68.91% 

0.54 61.34% 87.95% 99.19% 72.28% 

0.52 56.07% 92.31% 99.25% 69.77% 

0.50 46.53% 100.00% 99.22% 63.51% 

FaceNet39 0.90 96.42% 100.00% 98.21% 98.18% 

VGGFace40 0.79 80.71% 97.41% 89.28% 88.28% 

OpenFace41 0.47 16.42% 95.83% 57.85% 28.04% 

DeepFace42 0.51 9.28% 100.00% 54.64% 16.99% 

 

6.3 Discussions 

In this chapter, an optical speckle-based optical cryptosystem has been proposed, implemented, 

and demonstrated in experiments, where a ground glass scattering medium has been exploited 
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as the physical secret key to generate speckles that uniquely encrypt information. As for a 

cryptosystem, security is the topmost concern, and we will discuss the security of the proposed 

method from three aspects, including the physical secret key, the optical setup, and cracking 

attacks. 

 

6.3.1 Length of the Secret Key 

The equivalent key length of the scattering medium can be modeled by the transmission matrix, 

whose dimension is (256 × 256)  ×  (64 × 64), and each element is 64 bits (for complex 

float numbers) in the computer. Thus, the digital key of this cryptosystem is of length 

64 ×  [(256 × 256)  ×  (64 × 64)]  =  1.72 × 1010  bits, that is, 17.2 gigabits, which is 

enormous for brute force attacks even with a quantum computer. In comparison, for pure 

software-based encryption approaches, such as Advanced Encryption Standard (AES) [5] and 

Compression Friendly Encryption Scheme (CFES) [39], the digital cryptosystems are all based 

on matrix manipulations. As the size of the matrix (i.e., digital secret key length) increases, 

more multiplicative manipulations are needed, and the computational complexity grows 

exponentially. Therefore, to balance computational efficiency and security, the digital secret 
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key lengths in digital cryptosystems are usually limited to hundreds of bits. However, in our 

speckle-based physical encryption process, no mathematical algorithms are involved, so the 

computational burden can be ruled out during encryption, and users can achieve high security 

without compromising encryption speed. Note that, when it comes to decryption, our optical 

cryptosystem involves a large amount of computation. Fortunately, these decryption processes 

can be accelerated by using a high-performance GPU. 

 

6.3.2 Unclonable Feature of the Secret Key 

As for the optical setup, it is nearly impossible to generate the same speckles with a different 

scattering medium (i.e., the physical secret key), in which the scatterers are randomly 

distributed. The light-medium interactions are very complicated, and the resultant optical 

propagation involves intricate multipath scattering; minor variations in the scattering medium 

can influence the optical field considerably, resulting in a totally different transmission matrix 

of the scattering medium. Therefore, compared with existing digital encryption matrix-based 

approaches (i.e., relays only on digital secret keys) [40], it is nearly impossible to duplicate the 

inhomogeneous refractive index distribution of the scattering medium to crack the cryptosystem, 



185 

 

except for a self-defined medium such as a metasurface [41-42]. Therefore, the speckles can be 

viewed as nearly unclonable, and the decryption process is exclusive to the quantification of 

the scattering medium, that is, a deep neural network (DNN) trained with ciphertext (i.e., 

speckles) as the input and plaintext as the output. If speckles generated from another scattering 

medium (i.e., wrong physical secret keys) are input to the pre-trained neural network for 

decryption, as exampled in Figure 6-6, the decrypted results are obscure and very different from 

the plaintext. Consequentially, the decrypted images cannot be used for face recognition, and 

thus the security of the proposed system can be guaranteed. 
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Figure 6-6 Wrong physical secret key attack: the same plaintext images are used, but 

another scattering medium is utilized to generate the speckles (i.e., ciphertext), which are 

input to the pre-trained neural network to yield the decrypted plaintext images. The PCC, 

MSE, SSIM, and PSNR between the decrypted and the corresponding original face images 

are marked. The transmission matrix similarity, as measured by PCC, between the correct 

and wrong physical secret keys is 0.00012. Plaintext image I: Reproduced under terms of 

the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig at Second Home London, by 

Innotech Summit, Flickr (https://www.flickr.com/photos/115363358@N03/18260388752/). 

Plaintext image II: Reproduced under terms of the Public Domain Mark 1.0 license. 
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Copyright 2018, kỉ yếu 12c, by khanhkhokhao201Flickr (https://www.flickr.com/photos/ 

154663983@N08/28538465128/). Plaintext image III: Reproduced under terms of the 

Public Domain Mark 1.0 license. Copyright 2016, Future Leaders of the Pacific 2016 by 

US Embassy, Flickr (https://www.flickr.com/photos/us_embassy_newzealand/ 

29355772191/). Plaintext image IV: Reproduced under terms of the CC-BY 2.0 license. 

Copyright 2018, Ekaterina by Wonder Woman, Flickr (https://www.flickr.com/photos/ 

zamerzla/28685633938/). Plaintext image V: Reproduced under terms of the Public 

Domain Mark 1.0 license. 2015, Resiliency Day, Sept. 11, Copyright 2015 by Presidio of 

Monterey, Flickr (https://www.flickr.com/photos/presidioofmonterey/21442846325/). 

Plaintext image VI: Reproduced under terms of the CC-BY 2.0 license. Copyright 2008, 

P1020227 by Kyle Peyton, Copyright 2008, Flickr (https://www.flickr.com/photos/ 

kylepeyton/2779218214/). The original images were cropped and converted to grayscale. 

 

6.3.3 Uniqueness of Optical Setups 

Under extreme situations when hackers have obtained the scattering medium (i.e., the physical 

secret key), in order to produce the same speckles, the error in duplicating the optical system 
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alignment and the light-medium interaction should be within the optical wavelength scale [43]. 

That is, the optical setup ensures that the interaction between the light and medium is hard to 

reproduce due to the narrow range (approximately milliradians for tilt and submicrons for shift) 

of the memory effect. What’s more, within the memory effect, neural networks can be built to 

retrieve images from speckle autocorrelations, and the trained neural networks can be 

generalized to unknown scattering media, that is, the trained neural networks based on speckle 

autocorrelations can be used for a ciphertext-only attack. However, beyond the memory effect, 

it is theoretically impossible to build and train neural networks based on speckle 

autocorrelations to decrypt complex-structured face images from an unknown scattering 

medium, due to weak relations between speckle autocorrelations and image autocorrelations 

[43-44]. In experiments, the memory effect range is less than a quarter of the face image size, 

thus the cryptosystem is safe under ciphertext-only attacks. 

Furthermore, chosen-plaintext and known-plaintext attacks are possible only when attackers 

can get access to at least 10,000 image-speckle sets, as discussed in Figure 6-7. As seen, to 

achieve satisfactory performance, for example, PCC and face recognition accuracy greater than 

0.9, the training datasets need to be larger than 10,000 and 15,000, respectively. In the proposed 

cryptosystem, obtaining such a large number of image-speckle sets is possible only when 
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attackers have access to the optical setup and the unique physical secret key simultaneously, 

which, however, is very demanding and already beyond the scope of the topic. Even in that 

situation, if the unique physical secret key is stolen, it can be replaced with a new secret key to 

protect data. 

 

 

Figure 6-7 Experimental results with different dataset sizes: similarities between the 

decrypted and original images as measured by (a) PCC, (b) SSIM, and (c) PSNR, as well 
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as (d) face recognition accuracy, as a function of training dataset size. 

 

6.3.4 Others 

The intervention of optics further boosts the efficiency of encryption (i.e., at the speed of light), 

which overwhelms the software-based cryptosystems. Optical solutions, including the proposed 

speckle-based method and the DRPE method, can enable highly efficient encryption and 

generate high-dimensional secret keys [8]. Notably, compared with DRPE, the proposed 

method is advantageous due to its simpler optical design. DRPE requires two SLMs in the 

optical setup since the information is encrypted by two random phase masks [50]. In our 

cryptosystem, encryption can be performed with a scattering medium. This not only facilitates 

integration with other systems, but also reduces the cost of the cryptosystem. The most 

expensive component in the current system is the SLM, which is only responsible for loading 

the images and is indeed replaceable in practice since direct illumination of human faces can 

be used as input images for the cryptosystem. As a result, the cost of the proposed cryptosystems 

becomes comparable to the software-based cryptosystems, which only require computers for 

encryption and decryption. 
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When it comes to system latency, although well-known edge computing can help to recognize 

face images and protect privacy through computing in cloudlets, its scalability is refrained by 

the computing power, leading to applications of limited databases [45]. In comparison, the 

proposed light-based system can achieve fast encryption speed and high scalability. Moreover, 

with the development of high throughput communication networks, such as 5G, the latency of 

the proposed system can also be comparable to edge computing-based face recognition [46]. 

When it comes to the quality of decrypted images, the proposed neural network delivers high 

similarity between decrypted and original images, resulting in accurate face recognition (i.e., 

98%) that is comparable to other state-of-the-art methods [34-38]. That said, some high-

frequency information (i.e., detailed structures, such as hair) in images may still be lost after 

the speckle-based encryption in experiments, due to non-ideal experimental setups such as 

aberrations from the SLM curvature, optical lens, and camera. The lost high-frequency 

information is therefore difficult to be retrieved by neural networks during decryption. 

Furthermore, to simplify the optical setup, we have just recorded speckle intensity during 

experiments. The missing phase of the speckle field also results in information loss. These all 

lead to moderate PSNR of decrypted images, which will be improved in the next phase of the 

study by optimizing the optical setup or the neural network structures. 
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Last but not least, the novelty of the proposed speckle-based optical cryptosystem is highlighted 

from three aspects. First, although some literature has mentioned speckle-based encryption 

recently [51-52], they have mainly focused on the encryption of simple digits and characters, 

rather than complex-structured images such as face images. The cryptosystem for face 

reconstruction and recognition is considerably more complicated than that for digits and 

characters. Second, although learning-based decryption has also been demonstrated in [13] and 

[51], our efforts have gone beyond that. After decryption with high fidelity, face recognition is 

demonstrated with 98% accuracy, which is comparable to the state-of-the-art algorithms in the 

field. Third and most importantly, the proposed speckle-based optical cryptosystem has a very 

high level of security. The length of the physical security key is more than 17 gigabits, being 

many magnitudes longer than that of pure software-based encryption approaches and 

sufficiently secure for brute force attacks. Due to the nature of the speckle-based mechanism, 

there is no computational burden or compromised speed during encryption. Meanwhile, the 

complicated light-medium interaction assures that every physical secret key (i.e., the scattering 

medium) is unique and nearly unclonable. Furthermore, the narrow memory effect range of the 

optical system determines that the interaction between the light and the medium is hard to 

reproduce, protecting the cryptosystem from ciphertext-only attacks, chosen-plaintext attacks, 
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and known-plaintext attacks. The only exception is when the optical setup and the physical 

secret key are both leaked, which, however, is beyond what a cryptosystem can handle. 

 

6.4 Conclusion 

In this chapter, we demonstrate a speckle-based optical cryptosystem for face recognition, and 

the accuracy has reached more than 98%, which is comparable to that of other state-of-the-art 

methods. With the proposed speckle-based optical cryptosystem, the encrypted private data 

(e.g., face images) is difficult to crack and reduces the risk of information leakage. The speckle-

based optical cryptosystem is suitable for practical applications due to its high security, fast 

speed, low cost, insensitivity to the ROI, as well as immunity to low and moderate noise in the 

ciphertexts. That said, the accuracy of face recognition can still be further improved by 

constructing more complex neural networks that lead to an all-speckle-based optical 

cryptosystem for decryption and face recognition [47-48], where there is no need to decrypt 

optical speckles to face images. Moreover, to further enhance the security of the encryption 

processes, multi-channel laser diffraction by high-dimensional scattering media can be adopted 

to increase the speckle randomness. On the other hand, binary speckles can be used to reduce 
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data storage space and increase data transmission speed [49]. Collectively, although the 

experiments contain only a proof-of-principle demonstration for face encryption and 

recognition, we believe that with further optimization, the proposed speckle-based optical 

cryptosystem may find or inspire wide applications in high-security encryption and 

decryption.» 
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7 SUMMARY 

A significant obstacle to optical technologies is strong scattering, which distorts desired 

information and results in optical speckles rather than clear images. Despite the complexity of 

speckles, retrieving delocalized information from speckles has attracted considerable research 

interests. This thesis has explored overcoming, understanding, and utilizing optical speckles, 

aiming to enhance optical imaging capabilities at substantial penetration depths and exceptional 

resolutions. The thesis is structured into six chapters, each contributing uniquely to the 

overarching theme. 

Chapter 1 introduces the research fields of the thesis, including backgrounds, state-of-the-art 

research, and the motivations of the studies in the following chapters. 

Chapter 2 proposes a parameter-free algorithm for iterative wavefront shaping to overcome 

optical speckles. Iterative wavefront shaping has been approved to be an effective way to 

overcome scattering and has seen many exciting developments, such as focusing light and 

lossless image transmission through or inside scattering media. While encouraging, lots of 

efforts might be needed to tune parameters towards robust and optimum optimization. Moreover, 

optimal parameters might differ for different scattering samples and experimental conditions. 
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This chapter provides a robust method to enhance optical focusing through various scattering 

media, and the time-consuming and experience-dependent parameter tuning process, which is 

inevitable for existing iterative algorithms, is no longer needed with the proposed method. The 

integration of genetic, bat, and dynamic mutation algorithms to optimize parameters 

automatically is a significant step towards practical applications, reducing the dependency on 

manual parameter tuning. 

Chapter 3 addresses spatiotemporal decorrelation in optical speckles using a GAN-based 

framework. This chapter extends the focusing capabilities developed in Chapter 2 to imaging 

from decorrelated speckles by tackling the dynamic nature of scattering media. For long, 

researchers have made strides in retrieving target information from speckles, primarily through 

calibrating the transmission matrix of the scattering medium or employing neural networks. 

That said, most of these approaches are designed for stationary scattering media, and the fidelity 

of the retrieved images is significantly compromised when the scattering medium’s status 

changes due to motions, perturbations, or vibrations. Additionally, time intervals between 

acquiring the training and test datasets were neglected, and data from the training and test sets 

are highly correlated. In practical applications, time intervals between training and testing data 

are usually inevitable due to the lengthy training and the need for repeated usage. Hence, testing 
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data are often collected under different statuses of the medium/system, leading to decorrelation 

from the training data. The decorrelation has hindered these approaches so far from seeing wide 

applications in practice. In this chapter, we have proposed a GAN-based framework with 

extended generalizability, aiming to address the spatiotemporal instabilities of scattering media 

and the resultant decorrelation between training and testing data. Experiments demonstrate that 

the proposed GAN framework can be trained to retrieve face images from speckles with high 

fidelity, even when the scattering medium has undergone random decorrelation to unknown 

statuses after network training. Compared with existing learning-based implementations, the 

proposed GAN can non-holographically retrieve images from unstable scattering media and 

effectively address speckle decorrelation, even after the optical system has been inactive for an 

extended period (up to 37 hours in experiments) and subsequently reactivated. This capability 

paves the way for broad applications where networks can be pre-trained and maintain their 

effectiveness for data acquired at a later time. Such resilience is pivotal for extending the 

applications of learning-based methodologies in speckle imaging, encompassing applications 

like non-holographic imaging through scattering media. 

Chapter 4 delves deeper into the nature of speckles and explores how information is delocalized 

within optical speckles through the prism of information entropy. This chapter complements 
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the research in Chapters 2 and 3, providing a deeper theoretical understanding of speckle-related 

studies and applications. The concept of information delocalization in speckles has been 

introduced, proposing that object information is uniformly delocalized among optical speckles. 

Experimental findings reveal that object information is uniformly delocalized among speckles, 

maintaining consistent information across different ROIs of the same size and ensuring the 

equivalent fidelity of the retrieved information. This is the first work to systematically 

summarize the concept of delocalization. Furthermore, the concept of entropy is utilized to 

provide a quantitative understanding of delocalized information in speckles. Then, we propose 

the speckle sampling condition for high-fidelity information retrieval: the entropy of speckle 

autocorrelation should exceed that of image autocorrelation. That said, various factors can 

influence the information retrieval from speckles, including optical setups, environmental 

perturbations, neural network parameters, etc. At this moment, the speckle sampling condition 

is a necessary condition, with ongoing exploration into establishing a sufficient and necessary 

condition. Collectively, this chapter contributes significantly to the understanding of 

information delocalization in speckles and has the potential to inspire new research and speckle-

related applications, including high-throughput speckle imaging, non-line-of-sight imaging, 

optical speckle storage, etc. 
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Chapter 5 further explores delocalized information within speckles for direct classification 

through scattering media rather than solely for imaging, which is a synthesis of the practical 

algorithmic advancements and theoretical insights from the previous chapters. In Chapter 4, 

achieving high-fidelity information retrieval from optical speckles proves challenging, often 

requiring extensive speckle sampling that might be difficult in practical applications. From 

another point of view, certain applications of these retrieved speckle images do not necessarily 

demand high resolutions. For instance, in classification tasks, what matters most is identifying 

the type, rather than obtaining clear images. This implies that directly classifying the limited 

information in speckles could be possible and potentially yield better accuracy compared to 

classifying retrieved images from speckle retrieval. The advantage of direct classification stems 

from the fact that the quality of retrieved images from limited speckle information is often 

blurry, resulting in decreased accuracy in subsequent classification. Accordingly, this chapter 

introduces Speckle Transformer, a novel vision transformer-based model designed to classify 

original images with high accuracy using the limited information available in speckles with 

small ROIs. Due to bypassing the need for complete speckle data to retrieve images, Speckle 

Transformer enables the classification of images based on the features extracted from speckles, 

thereby achieving higher accuracy than traditional methods that rely on image retrieval. 
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Collectively, the experimental findings indicate that direct classification, enabled by Speckle 

Transformer, can achieve higher accuracies compared to classification after image retrieval, 

particularly in scenarios where speckles contain insufficient information for high-fidelity image 

retrieval. In the future, Speckle Transformer holds significant potential for application to non-

line-of-sight imaging and privacy-protected classifications. 

Chapter 6 shifts focus from overcoming speckles to utilizing speckles for encryption, which 

signifies a departure from the primary focus on imaging through scattering media to embracing 

the natural randomness of speckles. It is known that face recognition has recently become 

ubiquitous in many scenes for authentication or security purposes. In the meantime, there are 

increasing concerns about the privacy of face image data, which should be carefully protected. 

Software-based cryptosystems are widely adopted nowadays to encrypt face images, but 

security is limited by the insufficient digital secret key length. Hardware-based optical 

cryptosystems can generate enormously longer secret keys and enable encryption at the speed 

of light, but most reported optical encryption methods, such as double random phase encryption, 

have not yet been widely adopted as the optical design is complicated to be integrated with 

other systems. From another point of view, when coherent light propagates within and through 

scattering media, optical speckles are formed. The random features of speckles appear 
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meaningless and usually annoying, but constitute infinitely information channels, which may 

contribute to the tremendously long physical secret key length in a cryptosystem. However, as 

far as we know, speckle-based optical cryptosystems for complex tasks, such as encrypted face 

recognition, have rarely been explored. In this chapter, a plain yet high-efficient speckle-based 

optical cryptosystem is proposed, implemented, and demonstrated, where a ground glass is 

exploited to generate optical speckles that serve as an unclonable physical secret key with 

gigabit length and encrypt face images at light speed. The concept is decomposed into three 

steps: first, face images are optically scrambled into speckles for encryption, which protects the 

data during transmission and storage; then, a neural network is trained to decrypt the face 

images of high fidelity from the ciphertext (i.e., speckles); last, the decrypted images are 

compared with the known face encodings and recognized. In this cryptosystem, face images are 

encrypted into random speckles that are nearly impossible to decrypt without the knowledge of 

the physical key (i.e., the scattering medium) or the learned digital key (i.e., the neural network). 

To the best of our knowledge, this is the first demonstration of a speckle-based optical 

cryptosystem for face recognition. Although the current study contains only a proof-of-principle 

demonstration for encrypting face images, the proposed method may find or inspire speckle-

based applications in high-security information encryption and decryption. 
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Overall, this thesis contributes to overcoming the challenges posed by optical scattering, 

understanding delocalized information in optical speckles, and utilizing the properties of 

speckles for diverse applications. Each chapter builds upon the previous ones, creating a 

cohesive narrative that advances the field of speckle-related research and expands speckle-

related applications. Among these studies, the theory of delocalized information within optical 

speckles not only deepens our comprehension of this phenomenon but also paves the way for 

advancements in speckle imaging and related applications. 

To move forward, future work will explore the necessary and sufficient conditions for retrieving 

information from speckles with high fidelity. This includes investigating the limits of 

information retrieval in increasingly complex scattering environments and developing more 

sophisticated algorithms for information retrieval. Additionally, further research will focus on 

enhancing the robustness and generalizability of neural network-based frameworks to handle a 

wider range of dynamic conditions in biological applications. Another promising direction is 

the integration of speckle-based techniques with other imaging modalities, such as fluorescence 

and photoacoustic imaging, to improve the overall imaging performance in deep tissue 

applications. Exploring the potential of speckle-based cryptosystems for other types of 

biometric data and expanding their applications in data storage are also important areas for 
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future investigation. Ultimately, these studies will provide a promising paradigm for applying 

optical imaging in biomedical optics with greater penetration depths and higher resolutions, 

benefiting researchers within and beyond deep tissue imaging and diagnosis. 

 


